Question

A 15.0-g coin slides upward on a surface that is inclined at an angle of 12.0°...

A 15.0-g coin slides upward on a surface that is inclined at an angle of 12.0° above the horizontal. The coefficient of kinetic friction between the coin and the surface is 0.230; the coefficient of static friction is 0.350. Find the magnitude and direction of the force of friction under the following circumstances.

(a) when the coin is sliding

______ N (parallel to the incline, down the incline, or up the incline)

b)  after it comes to rest. (Note: One method will give you the maximum static friction force whereas the other will give you the static friction force for this scenario.)

______N (parallel to the incline, down the incline, or up the incline)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A 15.0-g coin slides upward on a surface that is inclined at an angle of 12.0°...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass M slides upward along a rough plane surface inclined at angle to the horizontal....

    A mass M slides upward along a rough plane surface inclined at angle to the horizontal. Initially the mass has a speed V before it slides a distance Lup the incline. The coefficient of kinetic friction between the mass and the incline is *. While sliding, the acceleration of the mass is: Directed upward along the incline Directed downward along the incline Determined by the force of gravity on the mass Determined by the frictional force on the mass Determined...

  • Question 1 1 pts A mass M slides upward along a rough plane surface inclined at...

    Question 1 1 pts A mass M slides upward along a rough plane surface inclined at angle to the horizontal. Initially the mass has a speed V. before it slides a distance L up the incline. The coefficient of kinetic friction between the mass and the incline is fut. While sliding, the acceleration of the mass is: Directed upward along the incline Directed downward along the incline Determined by the force of gravity on the mass Determined by the frictional...

  • Question 1 1 pts Mi A mass M slides upward along a rough plane surface inclined...

    Question 1 1 pts Mi A mass M slides upward along a rough plane surface inclined at angle o to the horizontal. Initially the mass has a speed V, before it slides a distance L up the incline. The coefficient of kinetic friction between the mass and the incline is k. While sliding, the acceleration of the mass is: Directed upward along the incline Directed downward along the incline OOOO Determined by the force of gravity on the mass Determined...

  • A mass M slides upward along a rough plane surface inclined at angle = 0.16 in...

    A mass M slides upward along a rough plane surface inclined at angle = 0.16 in radians to the horizontal. Initially the mass has a speed Vo = 2.68 m/s, before it slides a distance L = 1.0 m up the incline. After sliding this distance the new speed of the mass is V /4 measured in m/s. What is the acceleration of the sliding mass? (Positive denotes acceleration up the incline; negative denotes acceleration down the incline.)

  • A mass M slides upward along a rough plane surface inclined at angle = 0.12 in...

    A mass M slides upward along a rough plane surface inclined at angle = 0.12 in radians to the horizontal. Initially the mass has a speed Vo = 2.39 m/s, before it slides a distance L = 1.0 m up the incline. After sliding this distance the new speed of the mass is V /4 measured in m/s. What is the acceleration of the sliding mass? (Positive denotes acceleration up the incline; negative denotes acceleration down the incline.)

  • Mi A mass M slides-downward along a rough plane surface inclined at angle = 29.21 in...

    Mi A mass M slides-downward along a rough plane surface inclined at angle = 29.21 in degrees relative to the horizontal. Initially the mass has a speed Vo = 7.68 m/s, before it slides a distance L = 1.0 m down the incline. During this sliding, the magnitude of the power associated with the work done by friction is equal to the magnitude of the power associated with the work done by the gravitational force. What is the coefficient of...

  • A mass M slides downward along a rough plane surface inclined at angle \Theta\: Θ =...

    A mass M slides downward along a rough plane surface inclined at angle \Theta\: Θ = 29.8 in degrees relative to the horizontal. Initially the mass has a speed V_0\: V 0 = 5.32 m/s, before it slides a distance L = 1.0 m down the incline. During this sliding, the magnitude of the power associated with the work done by friction is equal to the magnitude of the power associated with the work done by the gravitational force. What...

  • A mass M slides downward along a rough plane surface inclined at angle \Theta\: Θ =...

    A mass M slides downward along a rough plane surface inclined at angle \Theta\: Θ = 31.7 in degrees relative to the horizontal. Initially the mass has a speed V_0\: V 0 = 6.9 m/s, before it slides a distance L = 1.0 m down the incline. During this sliding, the magnitude of the power associated with the work done by friction is equal to the magnitude of the power associated with the work done by the gravitational force. What...

  • Amass M slides upward along a rough plane surface inclined at angle = 0.16 in radians...

    Amass M slides upward along a rough plane surface inclined at angle = 0.16 in radians to the horizontal. Initially the mass has a speed Vo = 2.68 m/s, before it slides a distance L - 1.0 m up the incline. After sliding this distance the new speed of the mass is V /4 measured in m/s. What is the acceleration of the sliding mass? (Positive denotes acceleration up the incline; negative denotes acceleration down the incline.)

  • A mass M slides upward along a rough plane surface inclined at angle \Theta\: Θ =...

    A mass M slides upward along a rough plane surface inclined at angle \Theta\: Θ = 0.13 in radians to the horizontal. Initially the mass has a speed V_0\: V 0 = 2.11 m/s, before it slides a distance L = 1.0 m up the incline. After sliding this distance the new speed of the mass isV_0\: V 0 / 3 measured in m/s. What is the acceleration of the sliding mass? (Positive denotes acceleration up the incline; negative denotes...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT