Question

A rubber block (m= 20.0g) slides along a frictionless table at v=2.00m/s directly towards a steel...

A rubber block (m= 20.0g) slides along a frictionless table at v=2.00m/s directly towards a steel block (m= 0.0500kg), which is at rest on the table. After an inelastic collision, in which 25% of the system's kinetic energy is lost, the rubber block rebounds the way it came at a reduced speed. Determine the speed of each block after the collision.

(Is there a way to solve without quadratic?)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Using momentum conservation

Pi = Pf

m1V1i + m2V2i = m1V1f + m2*V2f

given that m1 = mass of rubber block = 20.0 g = 0.0200 kg

& m2 = mass of steel block = 0.0500 kg

V1i = initial speed of m1 = 2.00 m/s

V2i = initial speed of m2 = 0 m/s

initial speed of m1 = 2.00 m/s

V1f and V2f = ??

So, 0.0200*2.00 + 0.0500*0 = 0.02*V1f + 0.05*V2f

4 = 2*V1f + 5*V2f eq (1)

Now given 25% loss in System kinetic energy in collision.

So,KEf = 0.75*KEi

(0.5*m1*V1f^2) + (0.5*m2*V2f^2) = 0.75*((0.5*m1*V1f^2) + (0.5*m2*V2f^2))

using known values,

(0.5*0.02*V1f^2) + (0.5*0.05*V2f^2) = 0.75*0.5*0.02*2.0^2 = 0.03

6 = 2*V1f^2 + 5*V2f^2 eq(2)

Solving both eq(1) and (2),

V1f = -0.58 m/s and V2f = 1.03 m/s

Or V1f = 1.72 m/s and V2f = 0.11 m/s

GIven, the rubber block rebounds the way it came at a reduced speed.

So,

V1f = speed of rubber block = -0.58 m/s

V2f = speed of steel block = +1.03 m/s

No, there is now way to solve without Quadratic.

Please upvote.

Add a comment
Know the answer?
Add Answer to:
A rubber block (m= 20.0g) slides along a frictionless table at v=2.00m/s directly towards a steel...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.4 m and then collides with stationary block 2, which has mass m2 = 2m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.2 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?...

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h-3.3 m and then collides with stationary block 2, which has mass m2 = 4m1 After the collision, block 2 slides into a region where the coefficient of kinetic frictionPr įs045 and comes to a stop nd stance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic? Frictionless (a) Number Unit...

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 3.2 m and then collides with stationary block 2, which has mass m2 = 3m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction ?k is 0.2 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?

  • In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In the figure, block 1 of mass m1 slides from rest along a frictionless ramp from height h = 2.1 m and then collides with stationary block 2, which has mass m2 = 2m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction μk is 0.1 and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic?

  • In the figure, block 1 of mass 2.00 kg slides from rest along a frictionless ramp...

    In the figure, block 1 of mass 2.00 kg slides from rest along a frictionless ramp from height h = 2.60 m and then collides with stationary block 2, which has mass 4.50 kg. The spring shown has a spring constant of 31.5 N/m. (a) How fast is block 1 moving just before contacting block 2? (b) Assume the whole path is frictionless, and the collision is completely inelastic, how far does the spring compress? (c) Now, assume you test...

  • Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 3.50 kg , moves along a frictionless air track with speed v1 = 11.0 m/s . It collides with block 2, of mass m2 = 43.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

  • Block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height...

    Block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height h and then collides with stationary block 2, which has mass m2 = 3m1 . The collision is an elastic one. After the collision, block 2 slides into a friction-filled region where the coefficient of kinetic friction is 0.5 and comes to a stop through a distance d = 10 m in that region. (a) What is the height h? (b) What is the...

  • In Figure 9-69, block 1 of mass m1 slides from rest along a frictionless ramp from...

    In Figure 9-69, block 1 of mass m1 slides from rest along a frictionless ramp from height h and then collides with stationary block 2, which has mass m2 = 3m1. After the collision, block 2 slides into a region where the coefficient of kinetic friction is ?k and comes to a stop in distance d within that region. What is the value of distance d if the collision is (a) elastic and (b) completely inelastic? Express your answer in...

  • Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 9.10 kg , moves along a frictionless air track with speed v1 = 27.0 m/s . It collides with block 2, of mass m2 = 13.0 kg , which was initially at rest. The blocks stick together after the collision. What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision? Express your answer numerically in joules. Before collision: m2 After collision:

  • Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with...

    Block 1, of mass m1 = 8.90 kg , moves along a frictionless air track with speed v1 = 31.0 m/s . It collides with block 2, of mass m2 = 15.0 kg , which was initially at rest. The blocks stick together after the collision. (Figure 1) What is the change ΔK=Kfinal−Kinitial in the two-block system's kinetic energy due to the collision?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT