Question

A block of mass m is at rest at the top of a ramp of vertical...

A block of mass m is at rest at the top of a ramp of vertical height h. The block starts to slide down the frictionless ramp and reaches a speed v at the bottom. If the same block were to reach a speed 2v at the bottom, it would need to slide down a frictionless ramp of vertical height _____.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A block of mass m is at rest at the top of a ramp of vertical...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • need answer to both pls A block slides down a smooth ramp (without friction) of height...

    need answer to both pls A block slides down a smooth ramp (without friction) of height h. The block started at rest. It reaches a speed v at the bottom of the ramp. What would the height of the ramp need to be to reach a speed of 2u? 3h 4h 2 h 1.41 h 6 h h 0/1 pts Question 2 A block slides down a rough ramp (with friction) of height h. The block started at rest. It...

  • A block of mass m bogins at rest at the top of a ramp at elevation...

    A block of mass m bogins at rest at the top of a ramp at elevation h with whatever PE is associated with that height. The block slides down the ramp over a distance d until it reaches the bottom of the ramp How much of is original total energy (in J) reaches the ground? (In other words, the acceleration is not zero like it was lab and friction does not remove 1C0% of the original Pe How much of...

  • A block of mass m slides down a frictionless ramp to a loop of radius R,...

    A block of mass m slides down a frictionless ramp to a loop of radius R, also frictionless. It's initial height above the bottom of the loop is ?h = 3R and the block starts at rest. What is the magnitude of the normal force that the track of the loop exerts on the block at position 2? You can assume that the block is exactly at the horizontal height of the center of the loop when it reaches position...

  • As shown below (not to scale), a block of mass starts from rest and slides down...

    As shown below (not to scale), a block of mass starts from rest and slides down a frictionless ramp of height h. Upon reaching the bottom of the ramp, it continues to slide across a flat frictionless surface. It then crosses a "rough patch" on the surface of length d=10m. This rough patch has a coefficient of kinetic friction uK=.1. After crossing the rough patch, the block's final speed is vf=2m/s. What is the height of the ramp? Hint: I...

  • A block starts from rest and slides down a smooth ramp of height h. When it...

    A block starts from rest and slides down a smooth ramp of height h. When it reaches the bottom it is moving at speed v. It then continues to slide up a second smooth ramp. What is the velocity up the second ramp at the point the potential energy is equal to the kinetic energy? 1. v/2 2. v/3 3. v/4 4. v 5. sqrt(3)v/ 6. sqrt(2)v/

  • A 9.00-kg block of ice, released from rest at the top of a 1.44-m-long frictionless ramp,...

    A 9.00-kg block of ice, released from rest at the top of a 1.44-m-long frictionless ramp, slides downhill, reaching a speed of 2.88 m/s at the bottom.   the angle between the ramp and the horizontal is 17.1 degrees. What would be the speed of the ice at the bottom if the motion were opposed by a constant friction force of 10.8 N parallel to the surface of the ramp? v=?

  • 1 45 kg is released from rest from the top of a rough ramp, with Mass...

    1 45 kg is released from rest from the top of a rough ramp, with Mass - coefficient of kinetic friction 0.25 between the block and the incline, of height 3.2 m and length d 5.5 m. At the bottom of the ramp, the mass slides on a horizontal, frictionless surface until it compresses a spring of spring constant k 2. 110 N/m. a. Calculate the speed of the mass at the bottom of the ramp? b. How far does...

  • 3) Referring to the picture below, consider a block of mass m-1kg, sliding down a ramp...

    3) Referring to the picture below, consider a block of mass m-1kg, sliding down a ramp with that is frictionless. The block continues to slide a distance d along the table, which has coefficient of friction u 0.2. Using conservation of energy answer the following: a If the block starts at a height h=5.1m how fast is it going at the very bottom of the ramp? b. The block comes to a stop a distance, d, from the bottom of...

  • A block of mass m starts from rest and slides down from the top of a...

    A block of mass m starts from rest and slides down from the top of a wedge of height h and length d. The surface of the wedge forms an angle of ? with respect to the horizontal direction. The force of kinetic friction between the block and the wedge is f. How fast is the block traveling when it reaches the bottom of the wedge?

  • A block slides down a smooth ramp

    A block slides down a smooth ramp, starting from rest at a height h. When it reaches the bottom it’s moving at speed v. It then continues to slide up a second smoothramp.At what height is its speed equal to v/2?a.)h/4b.)h/2c.)3h/4d.)2hPlease show which formula you used.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT