Question

A 29  kg piece of zinc at 68◦C is placed in a container of water. The water...

A 29  kg piece of zinc at 68◦C is placed in a container of water. The water had a mass of 28  kg and a temperature of 20◦C before the zinc was added. The specific heat of zinc and water are 388 J/kg ·◦ C and 4180 J/kg ·◦ C, respectively. What is the final temperature of water and zinc? Answer in units of ◦ C.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Let the final temperature be t

heat lost by Zinc = heat gained by water

mcT for zinc = mcT for water

29*388*(68- t) = 28*4180*(t - 20)

t = 24.2o C

so the final temperature of water and zinc is 24.2o C

Add a comment
Know the answer?
Add Answer to:
A 29  kg piece of zinc at 68◦C is placed in a container of water. The water...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • One container holds 0.10 kg of water at 80 ∘C and is warmed to 100 ∘C...

    One container holds 0.10 kg of water at 80 ∘C and is warmed to 100 ∘C by heating from contact with the other container. The other container, also holding 0.10 kg of water, cools from 35 ∘C to 15 ∘C. Specific heat of water is 4180 J/kg⋅∘C. Estimate the total change in entropy of two containers of water using the actual temperatures to determine the heat transferred to each container and the average temperatures to determine the change in entropy....

  • A 0.0575 kg ice cube at −30.0°C is placed in 0.617 kg of 35.0°C water in...

    A 0.0575 kg ice cube at −30.0°C is placed in 0.617 kg of 35.0°C water in a very well insulated container, like the kind we used in class. The heat of fusion of water is 3.33 x 105 J/kg, the specific heat of ice is 2090 J/(kg · K), and the specific heat of water is 4190 J/(kg · K). The system comes to equilibrium after all of the ice has melted. What is the final temperature of the system?

  • A 0.0725 kg ice cube at −30.0°C is placed in 0.497 kg of 35.0°C water in...

    A 0.0725 kg ice cube at −30.0°C is placed in 0.497 kg of 35.0°C water in a very well insulated container, like the kind we used in class. The heat of fusion of water is 3.33 x 105 J/kg, the specific heat of ice is 2090 J/(kg · K), and the specific heat of water is 4190 J/(kg · K). The system comes to equilibrium after all of the ice has melted. What is the final temperature of the system?

  • A 1.8 kg piece of a metal initially at a temperature of 180o C is dropped...

    A 1.8 kg piece of a metal initially at a temperature of 180o C is dropped into the water with mass of 14 kg. The water is in a container made of the same metal with mass 3.6 kg. The initial temperature of the water and container is 16.0o C, and the final temperature of the entire system (including the container) is 18.0o C. Calculate the specific heat of the metal. * Heat of fusion of water: 3.33

  • The temperature of 2.7 kg of water is 34° C. To cool the water, ice at...

    The temperature of 2.7 kg of water is 34° C. To cool the water, ice at 0° C is added to it. The desired final temperature of the water is 11° C. The latent heat of fusion for water is 333.5 × 103 J/kg, and the specific heat capacity of water is 4186 J/(kg·C°). Ignoring the container and any heat lost or gained to or from the surroundings, determine how much mass m of ice should be added. m =  kg

  • The temperature of 2.26 kg of water is 34 °C. To cool the water, ice at...

    The temperature of 2.26 kg of water is 34 °C. To cool the water, ice at 0 °C is added to it. The desired final temperature of the water is 11 °C. The latent heat of fusion for water is 33.5 × 104 J/kg, and the specific heat capacity of water is 4186 J/(kg·C°). Ignoring the container and any heat lost or gained to or from the surroundings, determine how much mass m of ice should be added.

  • An 825 g iron block is heated to 352°C and placed in an insulated container (of...

    An 825 g iron block is heated to 352°C and placed in an insulated container (of negligible heat capacity) containing 40.0 g of water at 20.0°C. The following may be useful: specific heat of water = 4186 J/(kg K); specific heat of water vapor = 2090 J/(kg K); specific heat of iron = 560 J/(kg K); latent heat of vaporization for water = 2.26 x 106 J/kg. a. Is the final temperature less than, equal to, or larger than 100°C?...

  • An 825 g iron block is heated to 352°C and placed in an insulated container (of...

    An 825 g iron block is heated to 352°C and placed in an insulated container (of negligible heat capacity) containing 40.0 g of water at 20.0°C. The following may be useful: specific heat of water = 4186 J/(kg K); specific heat of water vapor = 2090 J/(kg K); specific heat of iron = 560 J/(kg K); latent heat of vaporization for water = 2.26 x 106 J/kg. Is the final temperature less than, equal to, or larger than 100°C? You...

  • 4. A 0.500 kg piece of copper at an initial temperature of 20.0°C is placed in...

    4. A 0.500 kg piece of copper at an initial temperature of 20.0°C is placed in a water bath and the temperature of the metal is raised to 100.0°C. Note: The specific heat capacity of copper is 385J/kg K and the latent heat of fusion is 2.07x1057/kg. a. How much heat was required to raise the temperature of the copper? b. How much more heat would be required to raise the copper to its melting point? C. How much heat...

  • Initially you have mW = 3.4 kg of water at TW = 54°C in an insulated container. You add ice at TI = -21°C to the contain...

    Initially you have mW = 3.4 kg of water at TW = 54°C in an insulated container. You add ice at TI = -21°C to the container and the mix reaches a final, equilibrium temperature of Tf = 25°C. The specific heats of ice and water are cI = 2.10×103J/(kg⋅°C) and cW = 4.19×103 J/(kg⋅°C), respectively, and the latent heat of fusion for water is Lf = 3.34×105 J/kg. (11%) Problem 7: Initially you have mw = 3.4 kg of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT