Question

Initially you have mW = 3.4 kg of water at TW = 54°C in an insulated container. You add ice at TI = -21°C to the container and the mix reaches a final, equilibrium temperature of Tf = 25°C. The specific heats of ice and water are cI = 2.10×103J/(kg⋅°C) and cW = 4.19×103 J/(kg⋅°C), respectively, and the latent heat of fusion for water is Lf = 3.34×105 J/kg.

(11%) Problem 7: Initially you have mw = 3.4 kg of water at Tw = 54°C in an insulated container. You add ice at Ti = -21°C to

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given mw = 3-4 kg Tw = 54 C To = -21°C If = 250 C: = 2.1 x 1 /-k Cu = 4.19 110°J-va-c L = 2.34 x 6 / a) Recall Principle of c

Add a comment
Know the answer?
Add Answer to:
Initially you have mW = 3.4 kg of water at TW = 54°C in an insulated container. You add ice at TI = -21°C to the contain...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (17%) Problem 6: You have mw = 4.9 kg of water in an insulated container. You...

    (17%) Problem 6: You have mw = 4.9 kg of water in an insulated container. You add mı = 0.15 kg of ice at Ty=-19°C to the water and the mix reaches a final, equilibrium temperature of Tp = 11°C. The specific heats of ice and water are q = 2.10x10 J/(kg-ºC) and cw = 4.19x10 J/(kg:°C), respectively, and the latent heat of fusion for water is 4 = 3.34x10J/kg. Calculate the initial temperature of the water, in degrees Celsius....

  • (10%) Problem 8: in a very well-insulated container. The latent heat of fusion for water is...

    (10%) Problem 8: in a very well-insulated container. The latent heat of fusion for water is A0ass-kg ice cube at-300°C is placed in 0.345 kg of 35.0°C w ater 79.8 kcal/kg. Substances Specifiche t( J/kg C kcal/k C ) Solids Aluminum Concrete Copper 840 387 840 2090 0.215 0.20 0.0924 0.20 0.50 Glass Ice (average Liquids Water 4186 Gases | Steam (100°C) 1520 (2020) 10.363(0.482) Ctheexpertta.com D& What is the final te of the water, in degrees Celsius? Grade Summary...

  • (20%) Problem 3: A thermos contains m = 0. 79 kg of tea at IT, = 31° C. Ice (m, = 0.055 kg, T, = 0° C) is added to it....

    (20%) Problem 3: A thermos contains m = 0. 79 kg of tea at IT, = 31° C. Ice (m, = 0.055 kg, T, = 0° C) is added to it. The heat capacity of both water and tea is c 4186 J/(kg K), and the latent heat of fusion for water is L4= 33.5 x 104 J/kg. A 50% Part (a) Input an expression for the final temperature after the ice has melted and the system has reached thermal...

  • at 1200C is added to 8.o kg of ice at 20 c and te entesse sample...

    at 1200C is added to 8.o kg of ice at 20 c and te entesse sample water reaches an equilibrium that occur for this process? state. Specific Heats Latent Heats 333.000 kg Ice Water 418 Steam 2100 J/kg/C 2010 J/kg/C Fusion Vap orization 2,260,0 33.6 c 5.0 Kg

  • A 0.0600 kg ice cube at −30.0°C is placed in 0.537 kg of 35.0°C water in...

    A 0.0600 kg ice cube at −30.0°C is placed in 0.537 kg of 35.0°C water in a very well insulated container. What is the final temperature? The latent heat of fusion of water is 79.8 kcal/kg, the specific heat of ice is 0.50 kcal/(kg · °C), and the specific heat of water is 1.00 kcal/(kg · °C).

  • The temperature of 2.7 kg of water is 34° C. To cool the water, ice at...

    The temperature of 2.7 kg of water is 34° C. To cool the water, ice at 0° C is added to it. The desired final temperature of the water is 11° C. The latent heat of fusion for water is 333.5 × 103 J/kg, and the specific heat capacity of water is 4186 J/(kg·C°). Ignoring the container and any heat lost or gained to or from the surroundings, determine how much mass m of ice should be added. m =  kg

  • The temperature of 2.26 kg of water is 34 °C. To cool the water, ice at...

    The temperature of 2.26 kg of water is 34 °C. To cool the water, ice at 0 °C is added to it. The desired final temperature of the water is 11 °C. The latent heat of fusion for water is 33.5 × 104 J/kg, and the specific heat capacity of water is 4186 J/(kg·C°). Ignoring the container and any heat lost or gained to or from the surroundings, determine how much mass m of ice should be added.

  • Three 110.0-g ice cubes initially at 0°C are added to 0.860 kg of water initially at 21.0°C in an insulated container....

    Three 110.0-g ice cubes initially at 0°C are added to 0.860 kg of water initially at 21.0°C in an insulated container. (a) What is the equilibrium temperature of the system? °C (b) What is the mass of unmelted ice, if any, when the system is at equilibrium? 1 kg

  • 5.45 kg block of ice at 0°C is added to an insulated container partially filled with...

    5.45 kg block of ice at 0°C is added to an insulated container partially filled with 11.9 kg of water at 15.0°C (a) Find the final temperature, neglecting the heat capacity of the container (b) Find the mass of the ice that was melted. 3.21 Your response differs from the correct answer by more than 10%. Double check your calculations. kg GETTING STARTED | I'M STUCK! EXERCISE HINTS: If 9.00 kg of ice at -5.00°C is added to 12.0 kg...

  • A 0.0575 kg ice cube at −30.0°C is placed in 0.617 kg of 35.0°C water in...

    A 0.0575 kg ice cube at −30.0°C is placed in 0.617 kg of 35.0°C water in a very well insulated container, like the kind we used in class. The heat of fusion of water is 3.33 x 105 J/kg, the specific heat of ice is 2090 J/(kg · K), and the specific heat of water is 4190 J/(kg · K). The system comes to equilibrium after all of the ice has melted. What is the final temperature of the system?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT