Question

A block of mass m is placed on top of a light vertical spring of force...

A block of mass m is placed on top of a light vertical spring of force constant k and pushed downward so that the spring is compressed by x. After the block is released from rest it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?

a) kx2/mg

b) 2kx2/mg

c) kx2/2mg

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A block of mass m is placed on top of a light vertical spring of force...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass 0.250 kg is placed on top of a light, vertical spring of...

    A block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?

  • A block of mass 0.3 kg is placed on top of a light vertical spring of...

    A block of mass 0.3 kg is placed on top of a light vertical spring of force constant (spring constant) 3 000 N/m and pushed downward so that the spring is compressed by 0.14 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise, in units of meters? QUESTION 17

  • A block of mass 0.240 kg is placed on top of a light

    A block of mass 0.240 kg is placed on top of a light, vertical spring of force constant 5 200 N/m and pushed downward so that the spring is compressed by 0.094 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise? (Round your answer to two decimal places.) 

  • 4. A block of mass 0.25 kg is placed on a vertical spring of constant k-...

    4. A block of mass 0.25 kg is placed on a vertical spring of constant k- 5000 N/m, and is pushed downward compressing the spring a distance of 0.1 m. As the block is released, it leaves the spring and continues to travel upward. To what maximum height above the point of release does the block rise?

  • A Block of Mass 0.5 Kg is placed on top of a light, vertical spring of...

    A Block of Mass 0.5 Kg is placed on top of a light, vertical spring of spring constant 50 N/m, causing the spring to compress some amount. The block is then pushed downwards by a persons hand so that the spring is compressed an additional 15 cm. The block is then released from rest, so that it travels upward and then leave the spring. A. What is the kinetic energy of the block as it leave the spring? B. What...

  • 3. Work and Energy A block of mass 0.50 kg is placed on top of a...

    3. Work and Energy A block of mass 0.50 kg is placed on top of a spring with negligible mass and force constant 5,000 N/m. Initially, the spring is compressed by 0.100 m. After the block is released from rest, it travels vertically upward and leaves the spring. a) What is the speed of the block when it leaves the spring? b) What maximum height does the block reach? c) What is the velocity of the block half-way to the...

  • A vertical spring with a spring coustant k = 1500 N/m is sticking up from the...

    A vertical spring with a spring coustant k = 1500 N/m is sticking up from the floor. A block with a mass of 2.6 kg is pushed downward on the spring until the spring is compressed by 4.4 cm, but the block is not connected to the spring. The block is then released at rest, and it moves upwards, leaving the spring behind. How high above its release point will the block travel before it stops and starts to fall?...

  • A block with mass m = 1.86 kg is placed against a spring on a frictionless...

    A block with mass m = 1.86 kg is placed against a spring on a frictionless incline with angle θ = 33.9° (see the figure). (The block is not attached to the spring.) The spring, with spring constant k = 25 N/cm, is compressed 28.1 cm and then released. (a) What is the elastic potential energy of the compressed spring? (b) What is the change in the gravitational potential energy of the block-Earth system as the block moves from the...

  • ASAP Problem 1: The 30-lb block A is placed on the top of a spring (only...

    ASAP Problem 1: The 30-lb block A is placed on the top of a spring (only one spring) and then pushed down with distance d.6 inch to the position shown. The coefficient of the spring k-200 lb/in. If it is then released, determine the maximum height h as indicated belwo to which it will rise and the speed of the block when it reach the half of h during the process of its moving up.

  • A block with mass m = 1.47 kg is placed against a spring on a frictionless...

    A block with mass m = 1.47 kg is placed against a spring on a frictionless incline with angle 0 = 37.10 (see the figure). (The block is not attached to the spring.) The spring, with spring constant k = 19 N/cm, is compressed 22.5 cm and then released. (a) What is the elastic potential energy of the compressed spring? (b) What is the change in the gravitational potential energy of the block-Earth system as the block moves from the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT