Question

A block of mass 0.250 kg is placed on top of a light, vertical spring of...

A block of mass 0.250 kg is placed on top of a light, vertical spring of force constant 5 000 N/m and pushed downward so that the spring is compressed by 0.100 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A block of mass 0.250 kg is placed on top of a light, vertical spring of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass 0.3 kg is placed on top of a light vertical spring of...

    A block of mass 0.3 kg is placed on top of a light vertical spring of force constant (spring constant) 3 000 N/m and pushed downward so that the spring is compressed by 0.14 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise, in units of meters? QUESTION 17

  • A block of mass m is placed on top of a light vertical spring of force...

    A block of mass m is placed on top of a light vertical spring of force constant k and pushed downward so that the spring is compressed by x. After the block is released from rest it travels upward and then leaves the spring. To what maximum height above the point of release does it rise? a) kx2/mg b) 2kx2/mg c) kx2/2mg

  • A block of mass 0.240 kg is placed on top of a light

    A block of mass 0.240 kg is placed on top of a light, vertical spring of force constant 5 200 N/m and pushed downward so that the spring is compressed by 0.094 m. After the block is released from rest, it travels upward and then leaves the spring. To what maximum height above the point of release does it rise? (Round your answer to two decimal places.) 

  • A Block of Mass 0.5 Kg is placed on top of a light, vertical spring of...

    A Block of Mass 0.5 Kg is placed on top of a light, vertical spring of spring constant 50 N/m, causing the spring to compress some amount. The block is then pushed downwards by a persons hand so that the spring is compressed an additional 15 cm. The block is then released from rest, so that it travels upward and then leave the spring. A. What is the kinetic energy of the block as it leave the spring? B. What...

  • 4. A block of mass 0.25 kg is placed on a vertical spring of constant k-...

    4. A block of mass 0.25 kg is placed on a vertical spring of constant k- 5000 N/m, and is pushed downward compressing the spring a distance of 0.1 m. As the block is released, it leaves the spring and continues to travel upward. To what maximum height above the point of release does the block rise?

  • 3. Work and Energy A block of mass 0.50 kg is placed on top of a...

    3. Work and Energy A block of mass 0.50 kg is placed on top of a spring with negligible mass and force constant 5,000 N/m. Initially, the spring is compressed by 0.100 m. After the block is released from rest, it travels vertically upward and leaves the spring. a) What is the speed of the block when it leaves the spring? b) What maximum height does the block reach? c) What is the velocity of the block half-way to the...

  • solve When a 4.00 kg object is placed on top of a vertical spring, the spring...

    solve When a 4.00 kg object is placed on top of a vertical spring, the spring compresses a distance of 2.17 cm. What is the force constant of the spring? N/m A 1.00 kg object is Attached to a horizontal Spring. The spring is initially stretched by 0.500 m, and the object is released from rest there. It proceeds to move without friction. The next time the speed of the Object is 0.600 s later. What is the maximum speed...

  • A block of mass 3 kg is pushed against a spring of spring constant 3000 N/m....

    A block of mass 3 kg is pushed against a spring of spring constant 3000 N/m. Initially, the spring is compressed by a distance of 0.220 m, when the block is released from rest and travels along a horizontal frictionless surface before encountering a frictionless ramp, inclined at an angle of 37° above the horizontal. How far along the ramp does the block travel before momentarily coming to rest?

  • A block with mass m = 1.86 kg is placed against a spring on a frictionless...

    A block with mass m = 1.86 kg is placed against a spring on a frictionless incline with angle θ = 33.9° (see the figure). (The block is not attached to the spring.) The spring, with spring constant k = 25 N/cm, is compressed 28.1 cm and then released. (a) What is the elastic potential energy of the compressed spring? (b) What is the change in the gravitational potential energy of the block-Earth system as the block moves from the...

  • In the figure, a 2.6 kg block is accelerated from rest by a compressed spring of...

    In the figure, a 2.6 kg block is accelerated from rest by a compressed spring of spring constant 660 N/m. The block leaves the spring at the spring's relaxed length and then travels over a horizontal floor with a coefficient of kinetic friction ?k = 0.272. The frictional force stops the block in distance D = 7.9 m. What are (a) the increase in the thermal energy of the block In the figure, a 2.6 kg block is accelerated from...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT