Question

In each case indicate whether the quantity in question increased, decreased or stayed the same when...

In each case indicate whether the quantity in question increased, decreased or stayed the same when the tension is increased. Assume that the string length is unchanged. The function generator is kept at the same frequency, and the string is in resonance in all cases.

Number of antinodes:

Wavelength:

Fundamental frequency:

Fundamental wavelength:

Wave speed:

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution:

  • Wavelength stayed the same
  • Fundamental frequency decreased
  • fundamental wavelength increased
  • Wave speed stayed the same
Add a comment
Know the answer?
Add Answer to:
In each case indicate whether the quantity in question increased, decreased or stayed the same when...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In each case indicate whether the quantity in question increased, decreased or stayed the same when...

    In each case indicate whether the quantity in question increased, decreased or stayed the same when the string length is increased. Assume that the tension is unchanged. The function generator is kept at the same frequency, and the string is in resonance in all cases. Wavelength: Fundamental frequency: Fundamental wavelength: Wave speed:

  • just need to double check my answers please answer 17-22 33.3 Hz ) 333 HZ )...

    just need to double check my answers please answer 17-22 33.3 Hz ) 333 HZ ) 3.35 110 temperature of the air increases, what happens to the velocity of sound? (Assume all other factors remain the same) a) increases b) decreases ca d) none of the given cases c) does not change m. What is the period of the wave? monic wave travels with a speed of 200 m/s and has a wavelength of 0.800 a) 40 s ) 250...

  • Question 4 to 11 plz Dr? Standing Waves on a String Physics Topics If necessary, review...

    Question 4 to 11 plz Dr? Standing Waves on a String Physics Topics If necessary, review the following topics and relevant textbook sections from Serway / Jewett "Physics for Scientists and Engineers", 9th Ed. • Mathematics of Traveling Waves (Serway 17.2) • Speed of Waves on a String (Serway 17.3) • Superposition of Waves (Serway 18.1) • Standing Waves on a string (Serway 18.2, 18.3) Introduction Imagine two sinusoidal traveling waves with equal amplitudes and frequencies moving in opposite directions....

  • please answer all pre-lab questions 1 through 5. THANK YOU!!! this is the manual to give...

    please answer all pre-lab questions 1 through 5. THANK YOU!!! this is the manual to give you some background. the pre-lab questions.. the pre-lab sheet. Lab Manual Lab 10: String Waves & Resonance Before the lab, read the theory in Sections 1-3 and answer questions on Pre-lab Submit your Pre-lab at the beginning of the lab. During the lab, read Section 4 and follow the procedure to do the experiment. You will record data sets, perform analyses, answer questions, and...

  • segments over the length L of the string, where the length of each vibrating segment equals...

    segments over the length L of the string, where the length of each vibrating segment equals one-half wavelength. Use this fact to show that the fr of the allowed standing waves on this string are given by fn-nfi, where n 1,2,3, 4,5,... and fi is the fundamental frequency. In other words, derive an expression relating the nth harmonic to the fundamental frequency. Yo may use the fact that the wave velocity is the same for all modes. 1. For a...

  • I need help with the 3,5,7 harmonics part of the question Resonance Pre-Lab Assignment (1 point)...

    I need help with the 3,5,7 harmonics part of the question Resonance Pre-Lab Assignment (1 point) Recall from the "Introduction to Waves" lab that it was easy to calculate the harmonic number (n) and wavelength (A) of standing waves on a string by counting the number of antinodes (n -21/n). That was a system with nodes fixed at the end points. Today you will be working with a system that has one open end and one closed end (i.e. a...

  • EXAMPLE 14.8 Harmonics of a Stretched Wire GOAL Calculate string harmonics, relate them to sound, and...

    EXAMPLE 14.8 Harmonics of a Stretched Wire GOAL Calculate string harmonics, relate them to sound, and combine them with tensile stress. PROBLEM (a) Find the frequencies of the fundamental, second, and third harmonics of a steel wire 1.00 m long with a mass per unit length of 2.00 x 10-kg/m and under a tension of 80.0 N. (b) Find the wavelengths of the sound waves created by the vibrating wire for all three modes. Assume the speed of sound in...

  • I am completing a study guide, and was able to complete the first 2 pages. Any...

    I am completing a study guide, and was able to complete the first 2 pages. Any help on these questions? You are driving south on a road at a speed of 21.3 m/s and you hear a siren from a police car at a frequency of 915 Hz, as the police car approaches you while driving north. If the police car is going at a speed of 32.4 m/s, and the speed of sound is 343 m/s, what frequency would...

  • Example 18.7 The Mistuned Piano Strings Two identical piano strings of length 0.775 m are each tuned exactly to 400 Hz....

    Example 18.7 The Mistuned Piano Strings Two identical piano strings of length 0.775 m are each tuned exactly to 400 Hz. The tension in one of the strings is then increased by 1.0%. If they are now struck, what is the beat frequency between the fundamentals of the two strings? SOLVE IT Conceptualize As the tension in one of the strings is changed, its fundamental frequency changes. Therefore, when both strings are played, they will have different frequencies and beats...

  • please give me the answer to all of them thank you 8. -0 points My Notes...

    please give me the answer to all of them thank you 8. -0 points My Notes Ask Your Teacher A particle with a mass of 0.340 kg is attached to a horizontal spring with a force constant of 3.0ō N m At the moment t moving to the left. (Assume that the positive direction is to the right.) 0 the partice has s maximum speed of 75ms and s (a) Determine the particle's equation of motion, specifying its position as...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT