Question

A frictionless table is tilted at an angle of 25 degrees with respect to the vertical...

A frictionless table is tilted at an angle of 25 degrees with respect to the vertical as shown in Fig 5. A block of mass, m1= 18kg rests on the table. It is connected by a massless pulley to a ball of mass, m2=3kg, that hangs freely. If all frictionless forces of the table and pulley may be neglected, what is the magnitude of the acceleration of the m2 block?

- If the angle of the table can be adjusted, at a critical angle, the blocks will not accelerate. What is this critical angle?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A frictionless table is tilted at an angle of 25 degrees with respect to the vertical...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A mass m1 = 6.6 kg rests on a frictionless table. It is connected by a...

    A mass m1 = 6.6 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 = 3.7 kg that hangs freely. 1) What is the magnitude of the acceleration of block 1? 2) What is the tension in the string? 23.4 N Now the table is tilted at an angle of θ = 76° with respect to the vertical. Find the magnitude of the new acceleration of block 1. 2...

  • A mass m, = 6.9 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 =2.4 kg that hangs freely.

     A mass m, = 6.9 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 =2.4 kg that hangs freely. 1) What is the magnitude of the acceleration of block 1? 2) What is the tension in the string?3)  Now the table is tilted at an angle of 9= 79' with respect to the vertical. Find the magnitude of the new acceleration of block 1. 4) At what “critical" angle will the blocks NOT...

  • A mass m1 = 5.6 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 = 3.8 kg that hangs freely.

    A mass m1 = 5.6 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 = 3.8 kg that hangs freely.1) What is the magnitude of the acceleration of block 1?2) What is the tension in the string?3)Now the table is tilted at an angle of ? = 69.0° with respect to the vertical. Find the magnitude of the new acceleration of block 1.4) At what “critical” angle will the...

  • A mass m1 = 6 kg rests on a frictionless table. It is connected by a...

    A mass m1 = 6 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 = 2.6 kg that hangs freely. 1) What is the magnitude of the acceleration of block 1? m/s2 2) What is the tension in the string? N 3) Now the table is tilted at an angle of θ = 75° with respect to the vertical. Find the magnitude of the new acceleration of block 1....

  • A mass m1 = 3.4 kg rests on a frictionless table and connected by a massless...

    A mass m1 = 3.4 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 4.7 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.7 m. How much work is done by the normal force on m1? What is the final speed of the two blocks? What is the tension in the string as the block falls? The work done...

  •  A mass m1 = 4.3 kg rests on a frictionless table and connected by a massless...

     A mass m1 = 4.3 kg rests on a frictionless table and connected by a massless string over a massless pulley to another mass m2 = 3.4 kg which hangs freely from the string. When released, the hanging mass falls a distance d = 0.87 m. 1-How much work is done by gravity on the two block system? 2) How much work is done by the normal force on m1? 3) What is the final speed of the two blocks? 4)...

  • A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is...

    A block of mass m1=3.7 kg on a frictionless plane inclined as angle θ=30 degrees is connected by a cord over a massless, frictionless pulley to a second block of mass m2=2.3 kg hanging vertically (shown above). What are (a) the magnitude of the acceleration of each block, (b) the direction of the acceleration of the hanging block, and (c) the tension in the cord?

  • Two blocks are connected to a string, and the string is hung over a pulley connected...

    Two blocks are connected to a string, and the string is hung over a pulley connected to the ceiling, as shown in the figure below. Two blocks, labeled m1 and m2, are connected to a string which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. A block labeled m1 hangs suspended off the surface on the left side of the pulley. A block m2 is on the right side of...

  • A mass m1 = 5.7 kg rests on a frictionless table and connected by a massless...

    A mass m1 = 5.7 kg rests on a frictionless table and connected by a massless string to another mass m2 = 5.8 kg. A force of magnitude F = 44 N pulls m1 to the left a distance d = 0.89 m. How much work is done by the force F on the two block system? How much work is done by the normal force on m1 and m2? What is the final speed of the two blocks? How...

  • Two blocks, M1M1 and M2M2, are connected by a massless stringthat passes over a massless...

    Two blocks, M1 and M2, are connected by a massless string that passes over a massless pulley as shown in the figure. M1 has a mass of 7.75 kg and rests on an incline of θ1=73.5° . M2 rests on an incline of θ2=19.5°. Find the mass of block M2 so that the system is in equilibrium (i.e., not accelerating). All surfaces are frictionless.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT