Question

Two speakers spaced a distance 1.8 m apart emit coherent sound waves at a frequency of...

Two speakers spaced a distance 1.8 m apart emit coherent sound waves at a frequency of 547 Hz in all directions. The waves start out in phase with each other. A listener walks in a circle of radius one meter centered on the midpoint of the two speakers. At how many points does the listener observe destructive interference? The listener and the speakers are all in the same horizontal plane and the speed of sound is 340 m/s.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Two speakers spaced a distance 1.8 m apart emit coherent sound waves at a frequency of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two loudspeakers, labeled A and B, emnit sound waves in every direction. Both speakers emit sound...

    Two loudspeakers, labeled A and B, emnit sound waves in every direction. Both speakers emit sound with the same wavelength, and they are in phase (they emit peaks of the sound wave at the same time). The location labeled C is a location of constructive interference, and the location labeled D is a location of destructive interference. The distances from the loudspeakers to the locations are as indicated. (Picture may not be to scale!!) (a) What is the wavelength of...

  • Two speakers, A and B, are 4.00 m apart and are emitting identical in-phase sound waves....

    Two speakers, A and B, are 4.00 m apart and are emitting identical in-phase sound waves. The speed of sound in air is 340 m/s. Consider a line which is the perpendicular bisector of the line connecting the two speakers. The first interference maximum occurs at ±25.15 o from this line. (a) What is the frequency of the sound emitted? (b) Find the rest of the angles where constructive and destructive interference occur. (c) If the speakers are aboard a...

  • Two identical speakers are spaced 12 m apart, aimed toward each other. They each play a...

    Two identical speakers are spaced 12 m apart, aimed toward each other. They each play a 171.5 Hz tone with the same phase constant. A. If you stand at the center point between the speakers, the result of superposition of the sound waves from the speakers is constructive inteference. Explain. B. How far must you move from the center toward one of the speakers in m to reach the next point of destructive interference?

  • Question 27 7.0 m Two loudspeakers in a 20°C room emit 686 Hz sound waves which travel at 343 m/s. These two speakers a...

    Question 27 7.0 m Two loudspeakers in a 20°C room emit 686 Hz sound waves which travel at 343 m/s. These two speakers are wired oppositely as in ILL and emit equal amplitude sound waves. Explain how you know that at the point indicated that the interference is maximally constructive, perfectly destructive, or 5.0 m 636 1,25 84 1.25 m 686 Question 27 7.0 m Two loudspeakers in a 20°C room emit 686 Hz sound waves which travel at 343...

  • Two in-phase loudspeakers are 3.00 m apart. They emit sound with a frequency of 490 Hz....

    Two in-phase loudspeakers are 3.00 m apart. They emit sound with a frequency of 490 Hz. A microphone is placed half-way between the speakers and then moved along the line joining the two speakers until the first point of constructive interference is found. At what distance from that midpoint is that first point? The speed of sound in air is 343 m/s. Please work with this example. This question was asked on chegg and was not answered using the numeric...

  • 6-1 Two speakers emit sound waves with frequency 4.27 kHz s pts by the same oscillator...

    6-1 Two speakers emit sound waves with frequency 4.27 kHz s pts by the same oscillator so that they are in phase with each other. I place the They are driven speakers side-by-side, and I stand across the room from them. If someone moves one of the speakers towards me, I hear the total intensity drop and then rise again. How far had they moved the speaker at the point whereI heard a minimum intensity due to destructive interference of...

  • Two speakers, which are separated by a distance d, produce sound waves with the same amplitude,...

    Two speakers, which are separated by a distance d, produce sound waves with the same amplitude, phase and frequency. The frequency of the sound is 570 Hz. You stand a distance of 3.50 m directly in front of the left speaker, on the dashed line shown in the diagram. Assume the speed of sound to be 340 m/s. What is the smallest possible value of d so that you hear no sound because of destructive interference?

  • Two stereo speakers mounted 5.2 m apart on a wall emit identical in -phase sound waves....

    Two stereo speakers mounted 5.2 m apart on a wall emit identical in -phase sound waves. You are standing at the opposite wall of the room at a point directly between the two speakers. You walk 2.11 m parallel to the wall, to a location where you first notice that the sound intensity drops to zero. If the wall along which you are walking is 10.7 m from the wall with the speakers, what is the wavelength of the sound...

  • 1. (10 points) Two identical speakers are continuously emitting sound waves uniformly in all directions at...

    1. (10 points) Two identical speakers are continuously emitting sound waves uniformly in all directions at 440 Hz. The speed of sound is 344 m/s. Point P is a distance of rı= 3.13 m away from speaker 1 and r2 = 4.30 m from speaker 2: i. What is the phase difference between the waves at Point P? ii. Is this a point of constructive interference, destructive interference, or something in between? Explain. 2. (10 points) A real (non-ideal) double-slit...

  • 8. Two stereo speakers mounted 4.52 m apart on a wall emit identical in-phase sound waves....

    8. Two stereo speakers mounted 4.52 m apart on a wall emit identical in-phase sound waves. You are standing at the opposite wall of the room at a point directly between the two speakers. You walk 2.11 m parallel to the wall, to a location where you first notice that the sound intensity drops to zero. If the wall along which you are walking is 10.7 m from the wall with the speakers, what is the wavelength of the sound...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT