Question

Model a uniformly charged ring as a set of point charges placed on a circle. Place...

Model a uniformly charged ring as a set of point charges placed on a circle. Place the ring in the yz plane so that its axis is along the x axis. Give the ring a total charge of Q=50×10−9 C and a radius of R=0.1 m.

(a)  

Start an electron from rest at location 〈0.15,0,0〉 m, and model its motion. In each step you will need to calculate the net electric field at the location of the electron. Describe the motion you observe.

(b)  

Vary deltat and the number of point charges used to model the uniformly charged ring to make sure your calculation is accurate.

(c)  

Experiment with different initial locations that do not lie on the axis of the ring. You may also wish to experiment with giving the electron some initial momentum. Make a screen shot of the most interesting trajectory you find. Figure 15.76 is an example of one such trajectory.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Model a uniformly charged ring as a set of point charges placed on a circle. Place...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3:09 × Drill Set 1-new-PHYS 242.docx 2. (i A uniformly charged ring has radius a-0.15m and...

    3:09 × Drill Set 1-new-PHYS 242.docx 2. (i A uniformly charged ring has radius a-0.15m and total charge Q- 24 nC (see figure below) 0 What is the circumference of the ring, and thus the charge per unit length (charge density) of the ring Cm) charge density (ii) To find the potential (voltage) at point (P) distant (along the ring's axis) from the ring center, we can first find the E-field as we did in chapter 21, by considering the...

  • Exercise 23.7 Hints: Getting Started | I'm Stuck A rod 12.5 cm long is uniformly charged...

    Exercise 23.7 Hints: Getting Started | I'm Stuck A rod 12.5 cm long is uniformly charged and has a total charge of -27.0 PC. (a) Determine the magnitude of the electric field along the axis of the rod at a point 31.0 cm from its center. E = 13433.80109 X N/C It might be helpful to carefully follow through the example to make sure you understand the solution. (b) Determine the direction of the electric field along the axis of...

  • Electric Fields Equipment and Setup: Mathematica file- ElectricFields.nb Section A: Electric Fields Due to Two Charges...

    Electric Fields Equipment and Setup: Mathematica file- ElectricFields.nb Section A: Electric Fields Due to Two Charges Computer Setup for Section A 1. The first interactive panel shows electric fields due to two point charges, Qat (-1 m,0) and Q, at (1 m,0). The controls for this panel are at the top on the left 2. The top line has two checkboxes: one to Show Axes and the other to Show Field Lines. The top line also has a slider labeled...

  • 1) An object undergoes uniformly accelerated motion from point x1 = 6 m at time t1...

    1) An object undergoes uniformly accelerated motion from point x1 = 6 m at time t1 = 3 s to point x2 = 47 m at time t2 = 7 s. (The direction of motion of the object does not change.) (a) If the magnitude of the instantaneous velocity at t1 is v1 = 2 m/s, what is the instantaneous velocity v2 at time t2? (b) Determine the magnitude of the instantaneous acceleration of the object at time t2. 2)...

  • Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra...

    Consider a cylindrical capacitor like that shown in Fig. 24.6. Let d = rb − ra be the spacing between the inner and outer conductors. (a) Let the radii of the two conductors be only slightly different, so that d << ra. Show that the result derived in Example 24.4 (Section 24.1) for the capacitance of a cylindrical capacitor then reduces to Eq. (24.2), the equation for the capacitance of a parallel-plate capacitor, with A being the surface area of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT