Question

A.) We'll start with a very long coaxial cable that has two parts. There's a conducting...

A.) We'll start with a very long coaxial cable that has two parts. There's a conducting cylindrical inner wire of radius a, and a conducting cylindrical sheath around that with radius b. The space in between (a<r<b) is empty. Let the inner conductor have some linear charge density lambda along its length. Derive an expression for the magnitude of the electric field between the inner and outer conductors as a function of r.

B.) Consider the same geometry as the first part. However, for this part assume that the space in between the inner wire and outer sheath is filled with some inhomogeneous dielectric such that the electric field between the two conductors can be written as E(r)=C*lambda*r, where C is a positive known constant. Derive an expression for the potential difference between the two conductors.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A.) We'll start with a very long coaxial cable that has two parts. There's a conducting...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • This coaxial cable consists of a solid inner conductor of radius ?1 and a very thin...

    This coaxial cable consists of a solid inner conductor of radius ?1 and a very thin outer conductor of radius ?2. The two cables carry equal currents ?, but in the opposite direction. The current density is uniformly distributed within each conductor. a) Find expressions for the magnetic field (B-field) in three regions: i) within the inner conductor ii) in the space between the conductors iii) outside the outer conductor. b) Draw a graph of B vrsus the cylindrical radius...

  • 5. Consider a very long coaxial cable, comprised of concentric cylindrical conductors with some insulating gap...

    5. Consider a very long coaxial cable, comprised of concentric cylindrical conductors with some insulating gap between them. In particular, the inner solid cylindrical conductor has a radius, a, and carries a total, axial current, I. However, this current is not distributed uniformly along its circular cross section. In particular, the current density of this inner conductor is J(r) = Jovi where Jo is a positive constant that is to be determined and r labels the radial distance away from...

  • A coaxial cable, as shown in Figure 2, consists of an inner conductor of radius a,...

    A coaxial cable, as shown in Figure 2, consists of an inner conductor of radius a, surrounded by an outer conductor of radius b, along the same axis. The space is filled with dielectric. The cable is connected to a power supply and it is deposited a charge of +Q uniformly along the length of the surface of the inner conductor and a charge - Q uniformly along the length of the inner surface of the outer conductor. No fields...

  • 4. (12 points) A coaxial cable consists of a central conducting wire of radius a and...

    4. (12 points) A coaxial cable consists of a central conducting wire of radius a and a surrounding conducting cylindrical shell of inner radius b and outer radius c. Suppose the central wire carries a current I and the outer shell carries a uniform current 21 in the same direction. Use Ampere's Law to find the magnitude of the magnetic field (a) (3 points) in the region between the wire and outer shell a <r <b, (b) (6 points) inside...

  • A long cylindrical coaxial capacitor of length ?, has an inner radius ? and an outer...

    A long cylindrical coaxial capacitor of length ?, has an inner radius ? and an outer radius ?, as shown in figure (4). The capacitor is filled with one layers of an isotropic and homogenous dielectric with permittivity of 4??. If the voltage of the inner electrode is maintained at ?? while the outer electrode is earthed, calculate the following: a) Electric flux density and the electric field intensity in whole space b) The equation that describe the voltage between...

  • P25.5. Compare the loss in the inner conductor and outer conductor of a coaxial cable at 1 MHz. A...

    P25.5. Compare the loss in the inner conductor and outer conductor of a coaxial cable at 1 MHz. Assume the conductors are made of copper, that the cable is filled with a dielectric of permittivity er - 3, and that the dimensions are such that the inner conductor radiu:s a = 0.45 mm, and inner radius of the outer conductor b ae. The ratio of losses per unit length in the two conductors is: (a) 3.05. (b) 2.72. (c) 2.30....

  • The Baltic cable connects the power grids of Germany and Sweden beneath the Baltic sea. Assume th...

    The Baltic cable connects the power grids of Germany and Sweden beneath the Baltic sea. Assume the cross section of the cable looks as in the figure below. The coaxial cable has a cylindrical inner conductor, radius a and an outer conductor, radius b, with polyethylene (relative dielectric constant of 2.5; high dielectric breakdown strength) in between. The outer conductor is surrounded by a waterproof insulator (not shown). Assume that each conductor holds charge ±Q per unit length. 5. The...

  • A coaxial cable consists of an inner cylindrical conductor of radius R1 -0.040 m on the...

    A coaxial cable consists of an inner cylindrical conductor of radius R1 -0.040 m on the axis of an outer hollow cylindrical conductor of inner radius R2 -0.080 m and outer radius R3 = 0.090 m. The inner conductor carries current 11 = 4,40 A in one direction, and the outer conductor carries current 12-4.40A in the opposite direction. What is the magnitude of the magnetic field at the following distances from the central axis of the cable? (0 =...

  • Q.3 Consider an infinitely long coaxial structure shown in the figure below. Inner conductor has a...

    Q.3 Consider an infinitely long coaxial structure shown in the figure below. Inner conductor has a radius a and outer conducting shell has a radius b. Thickness of the outer conductor is ignored as it is very small. Between two conductors, there is a magnetic material with permeability () = Mo a Assume that the current I is distributed uniformly over the cross-section of the inner conductor whereas it flows on the surface of the outer conductor. a) Find the...

  • 6. (3 points) A coaxial cable consists of a solid inner conductor of radius Ri, surrounded...

    6. (3 points) A coaxial cable consists of a solid inner conductor of radius Ri, surrounded by a concentric cylindrical tube of inner radius R2 and outer radius Rs (called the shield) as shown in Figure 8. The conductors carry equal and opposite currents, I, distributed uniformly across their cross sections. Determine the magnetic field at a distance r from the axis for: (a) r< Ri (b) Ri < R2 Page 2 (c) R2<r<Rs (d) R3 (e) Plot the magnitude...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT