Question

A 100mm square steel block is released down a ramp of 45 degree incline and a...

A 100mm square steel block is released down a ramp of 45 degree incline and a length of 1000mm. The initial position of the block is 50mm over the top edge of the ramp. The initial speed is 10mm/sec. The mass of the block is 7.827kg.

Find and plot the x position and velocity, y position and velocity, and the velocity of the block when it reaches the bottom of the ramp.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

I have taken distance to be .95 m as i have taken distance from center of mass of tha box.

If your query is been resolved please upvote and if you have any doubt please comment down below.

Thanks and regards.

Add a comment
Know the answer?
Add Answer to:
A 100mm square steel block is released down a ramp of 45 degree incline and a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • a) what was the acceleration of the block down the ramp before the rope is pulled?...

    a) what was the acceleration of the block down the ramp before the rope is pulled? b) what was the acceleration of the block down the ramp after the rope is pulled? A4 kg block is released from rest at the top of a frictionless plane of length 9m that is inclined at an angle of 21 degrees to the horizontal Acord is attached to the block and trails along behind it. When the block reaches a point 3 m...

  • 1 45 kg is released from rest from the top of a rough ramp, with Mass...

    1 45 kg is released from rest from the top of a rough ramp, with Mass - coefficient of kinetic friction 0.25 between the block and the incline, of height 3.2 m and length d 5.5 m. At the bottom of the ramp, the mass slides on a horizontal, frictionless surface until it compresses a spring of spring constant k 2. 110 N/m. a. Calculate the speed of the mass at the bottom of the ramp? b. How far does...

  • 2. a- A 1.5 kg block slides down an inclined ramp with u 0.4. If the...

    2. a- A 1.5 kg block slides down an inclined ramp with u 0.4. If the ramp angle is 17.0° and the length of it is 30.0 m, assuming it started sliding at 5 m/s. Find the speed of the block as it reaches the end of the ramp b- a- A 3 kg block is pushed against a spring with negligible mass and force constant k 4500 N/m, compressing it 0.220 m. When the block is released, it moves...

  • Question 3. A block A, having a mass of 20-kg, is released from rest and slides...

    Question 3. A block A, having a mass of 20-kg, is released from rest and slides down an incline with coeffici an incline with coefficient of static d kinetic friction of 0.25 and 0.10, respectively. When it reaches the bottom of the ramp, it slides ally onto the surface of a 10-kg cart for which the coefficient of static and kinetic friction between Question 3. A block A, having a mass of 20-kg, is released from rest and slides down...

  • A block of mass m is at rest at the top of a ramp of vertical...

    A block of mass m is at rest at the top of a ramp of vertical height h. The block starts to slide down the frictionless ramp and reaches a speed v at the bottom. If the same block were to reach a speed 2v at the bottom, it would need to slide down a frictionless ramp of vertical height _____.

  • The length of the A 2 kg block is released from rest at the top of...

    The length of the A 2 kg block is released from rest at the top of a rough 40° inclined plane incline is 10 m. As the block slides down the incline, its acceleration is 3.0 m/s incline 1s 10 m. incline. Draw the free body diagram. a) Determine the magnitude of the force of friction acting on the bloc b) W hat is the speed of the block when it reaches the bottom of the inclined plane?

  • 1a. 1b. 1c. Block A slides down the incline In the figure, two blocks are connected...

    1a. 1b. 1c. Block A slides down the incline In the figure, two blocks are connected over a pulley. The mass of block A is me and the coeffcient of kinetic friction between A and the incline is in Angle of the incline is 6 at constant speed. What is the mass of block B? Express your answer in terms of the variables given. Frictionless, massless pulley B In the figure, a small block of mass m = 0.021 kg...

  • please show steps :) 21. A block of mass m slides down a rough ramp of...

    please show steps :) 21. A block of mass m slides down a rough ramp of height h. Its initial speed is zero. Its final speed at the bottom of the ramp is v. When it reaches the bottom of the ramp, how much mechanical energy (kinetic + potential) energy was converted into heat? V = 0 A) 0 B) mgh – mv2 C) mgh + mv2 D) mgh E) None of these

  • A block of mass m slides down a frictionless ramp to a loop of radius R,...

    A block of mass m slides down a frictionless ramp to a loop of radius R, also frictionless. It's initial height above the bottom of the loop is ?h = 3R and the block starts at rest. What is the magnitude of the normal force that the track of the loop exerts on the block at position 2? You can assume that the block is exactly at the horizontal height of the center of the loop when it reaches position...

  • A block of mass M = 4.000 kg is released from rest at the top of...

    A block of mass M = 4.000 kg is released from rest at the top of an incline of angle θ = 24.0º w.r.t. the horizontal. The coefficient of kinetic friction between the block and the incline is µk = 0.200 and the length of the incline (hypothenuse of the triangle shown below) is L = 6.00 m. ( w.r.t. = with respect to) I am trying to find: a. The work done by the normal force for the complete...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT