Question

1. How many lines would be in the emission spectrum of hydrogen if the hydrogen atom...

1. How many lines would be in the emission spectrum of hydrogen if the hydrogen atom had only 4 energy levels?

2. What was the initial energy level of an electron if it was excited by a photon of wavelength 0.656µm and jumped to an energy level of 3?

3 .Calculate the frequency of visible light emitted by electron drop from n=233000 in Balmer series of hydrogen atom.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
1. How many lines would be in the emission spectrum of hydrogen if the hydrogen atom...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • When an electron of an excited hydrogen atom descends, from an initial energy level (ni) to...

    When an electron of an excited hydrogen atom descends, from an initial energy level (ni) to a lower (nf), characteristic electromagnetic radiation is emitted. The Bohr model of the H-atom allows the calculation of ?E for any pair of energy levels. ?E is related to the wavelength (?) of the radiation according to Einstein's equation ( ?E = [(hc)/?]). Distinct series of spectral lines have been classified according to nf: Lyman series:nf=1 (91<?<123 nm; near-UV). Balmer series:nf=2 (365<?<658 nm; visible)....

  • 4 Item 4 Learning Goal: To calculate the wavelengths of the lines in the hydrogen emission...

    4 Item 4 Learning Goal: To calculate the wavelengths of the lines in the hydrogen emission spectrum Atoms give off light when heated or otherwise excited! The light emitted by excited atoms consists of only a few wavelengths, rather than a full rainbow of colors. When this light is passed through a prism, the result is a series of discrete lines separated by blank areas. The visible lines in the series of the hydrogen spectrum are caused by emission of...

  • Electronically excited hydrogen emits in the visible part of the spectrum in a series of lines...

    Electronically excited hydrogen emits in the visible part of the spectrum in a series of lines known as the Balmer series. Each of these transitions terminates in the n=2 level of hydrogen. What is the energy and wavelength and upper state quantum number for the first four of these transitions starting with the longest wavelength emission?

  • - White light spectrum –             a.         How does the spectrum of white light differ from the spectrum...

    - White light spectrum –             a.         How does the spectrum of white light differ from the spectrum of hydrogen, neon and                         sodium?             b.         What color corresponds to 5.7 x 10-7 meters? _____________________________ - Hydrogen Emission Spectrum –  There are several lines with colors and 3 lines which are             white.  The white lines are in the infrared region and not visible.             a.         Which line in the visible spectrum has the longest wavelength and lowest energy?                         ______________________                          b.         Figure 6.1 in the lab manual represents the Balmer...

  • 1.(3) The line of longest wavelength in visible light for the emission spectrum of hydrogen, 656nm...

    1.(3) The line of longest wavelength in visible light for the emission spectrum of hydrogen, 656nm (Balmer series), would correspond to what electronic transition? 2.(7) Explain the wave-particle duality of matter and light. Why don’t we notice this effect in everyday activities? What do electrons behave most like in an atom? 3.(8) What is the approximate range, in nm, for visible light? Which end contains photons of the highest energy? What is the mathematical relationship between energy of a photon...

  • Name Lab Day circled: Mon. Tues. AM Tues, PM Wed Thurs. Fri. Prelaboratory Exercise for the...

    Name Lab Day circled: Mon. Tues. AM Tues, PM Wed Thurs. Fri. Prelaboratory Exercise for the Atomic Emission and Absorption Experiment The spectroscopes used in our lab are scaled in nanometer units. You will work with three of the four possible Balmer series transitions of Hydrogen whose lines are in the visible region of the electromagnetie spectrum. Electrons absorb energy from n-2 level and depending on how much energy is absorbed, they are excited to different higher energy levels. From...

  • The hydrogen atomic emission spectrum includes a UV line with a wavelength of 92.323 nm. Photons...

    The hydrogen atomic emission spectrum includes a UV line with a wavelength of 92.323 nm. Photons of this wavelength are emitted when the electron transitions to n_t = 1 as the final energy state. Is this line associated with a transition between different excited states or between an excited state and the ground state? different excited states between an excited state and the ground state What is the energy of the emitted photon with wavelength 92.323 nm? What was the...

  • f. Calculate the Calculate the energy of a photon emitted when an electrina hydrogen atom makes...

    f. Calculate the Calculate the energy of a photon emitted when an electrina hydrogen atom makes transition from the n = 7 ton =2 energy level. 18 energy level an electron in I 2.18 xroll -19 in ) =-5.01x10-19 n = 6.62640 C = 3.00 x108 my Ab exctron= R (Ini? - / n ) = -5.01 t photon = -D Election - 1/²) 2. 18x10 J E photon - he (10204-.25) 1 (6.626x10 s 1 (3.00810ns). -5.01810-19 Calculate the...

  • 1. Consider a photon of light emitted from a hydrogen atom when an excited electron relaxes...

    1. Consider a photon of light emitted from a hydrogen atom when an excited electron relaxes from n=6 to n=3; calculate the energy (5 pts), frequency (3 pts) and wavelength (3 pts) of this light. In what portion of the electomagnetic spectrum does this photon of light appear? (1 pt)

  • Hydrogen spectrum tube a. The light emitted in a hydrogen spectrum tube comes from isolated hydrogen...

    Hydrogen spectrum tube a. The light emitted in a hydrogen spectrum tube comes from isolated hydrogen atoms excited by electricity. Is the spectrum of the light emitted by isolated atoms discrete or continuous? b. The spectrum of hydrogen is described by Rydberg's formula: , where R = 1.097 x 107m1 Based on Rydberg's formula, identify the electronic transitions (n + n) that correspond to each of the colored photons that you saw and their expected wavelengths. Compare them to the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT