Question

For flow over a flat plate with non-uniform wall temperature ??(?) = ?∞ + ??^? where...

For flow over a flat plate with non-uniform wall temperature ??(?) = ?∞ + ??^? where ? and ? being constants, by still using the following dimensionless temperature ?(?) =( ?? − ?)/ (?? − ?∞) show that the energy equation in the boundary layer reduces to: ?"+ ??? ∙ ?′(1− ?) + (?? /2) ?′? = 0 while the boundary conditions can be written as ? = 0: ? = 0 ? → 1: ? = 1 where ? = (?/ ?) ??? ^1/2 is the similarity variable and ?(?) is the known similarity solution of velocity profile in the boundary layer ( ? /?∞ = ?′)

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
For flow over a flat plate with non-uniform wall temperature ??(?) = ?∞ + ??^? where...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Use the integral method for boundary layer flow and convective heat transfer over a flat plate he...

    Use the integral method for boundary layer flow and convective heat transfer over a flat plate heated by maintaining a constant heat flux q"w, for the case of very low Prandtl number, Pr0. Assume that the free stream velocity of the fluid, U, and free stream temperature, T-do not vary with x. Using the integral form of energy equation, show that under these conditions: (a) the temperature profile, (T- T) is given by, 41 2 CT-T oa (b) the wall...

  • Q1. A flat plate is immersed in a uniform stream voo that moves parallel with the...

    Q1. A flat plate is immersed in a uniform stream voo that moves parallel with the flat plate. A boundary layer thickness δ is formed close to the plate surface. Using the control volume analysis of the boundary layer (the von Karman equation) determine relationships of the a. boundary layer displacement thickness, δ* b. momentum thickness, θ c. shear stress on the flat plate surface, Tu as a function of the velocity deficit 1- Then use the approximation that the...

  • 1. Consider a flat plate with variable wall temperature, Tu-T(), and neglect viscous dissipation ...

    1. Consider a flat plate with variable wall temperature, Tu-T(), and neglect viscous dissipation in the following analysis a) Define 0ow that the energy equation for the laminar boundary T-Tw (x) layer is dTw Ду 1. Consider a flat plate with variable wall temperature, Tu-T(), and neglect viscous dissipation in the following analysis a) Define 0ow that the energy equation for the laminar boundary T-Tw (x) layer is dTw Ду

  • 1- Consider laminar flat plate flow with the following approximate velocity profile: U[ exp-5y/8)] which satisfies the...

    1- Consider laminar flat plate flow with the following approximate velocity profile: U[ exp-5y/8)] which satisfies the conditions u = 0.993U at y = S. (a) Use this 0 at y 0 and u= profile in the two-dimensional momentum integral relation to evaluate the approximate boundary layer thickness variation S(x). Assume zero pressure gradient. (b) Now explain why your result in part (a) is deplorably inaccurate compared to the exact Blasius solution Scanned uww Cam Scanner 1- Consider laminar flat...

  • Consider laminar flow of an incompressible fluid past a flat plate. The boundary layer velocity profile...

    Consider laminar flow of an incompressible fluid past a flat plate. The boundary layer velocity profile is given as u = U sin () a. Determine the boundary layer thicknesses 8, 8, as a function of x. Express in terms of Reynolds number. b. Using momentum integral theory, determine the wall shear stress tw, as a func. of x. Express in terms of Reynolds number. C. Determine the friction drag coefficient, Cof-

  • 2. For a boundary layer flow with U suction velocity Vo (0 is introduced at the...

    2. For a boundary layer flow with U suction velocity Vo (0 is introduced at the wall to delay flow separation. (a) By integrating the boundary layer equations from porous wall across the boundary layer, show that the integral momentum equation is given by -constant over a porous plate as shown in Figure 1, a Ou where τνν-μ w- 1 оу y-o and (b) obtain the integral energy equation. (c) Perform the dimensionless analysis on the integral equations and discuss...

  • (b) For a laminar boundary layer on a flat plate the velocity profile uly) is given...

    (b) For a laminar boundary layer on a flat plate the velocity profile uly) is given by 0-30:48) where U is the free stream velocity, y is the distance measured normal to the surface of the plate and is the boundary layer thickness. Determine equations for (i) the momentum thickness , and (8 marks) (ii) the boundary layer thickness d. (7 marks)

  • Problem #3 Air flows over a flat plate at 4 m/s. An approximation for the x...

    Problem #3 Air flows over a flat plate at 4 m/s. An approximation for the x component of velocity in the in- compressible laminar boundary layer is a sinusoidal variation from u-0 at the surface (y-0) to the freestream velocity, U, at the boundary-layer edge (y-5). The equation for the profile is u-Usin( %), where cVx and c is a constant. The boundary layer is 9 mm thick 1 m from the edge of the plate. (a) Predict the boundary-layer...

  • Question 3: --うつc A flat plate is inserted with its edge at x = 0 in...

    Question 3: --うつc A flat plate is inserted with its edge at x = 0 in a uniform flow coming at velocity U parallel to the plate from the region where x < 0. If using a cubic approximation to the Blasius profile: u U(2n- n) with n-y/o, in which o(x)- Ax/(Re.) is the boundary layer thickness, 1. What should the relationship be between this δ(x) and the δ99-5.0d(Re.)12 in the Blasius profile, in order to yield the same drag?...

  • 3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on...

    3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on the surface. Assume the boundary (a). Wall shear stress, Fj)! layer bas a cubic velocity profile: (b). Boundary layer thickness, x)! (c). Shape factor (H-8t/0) Momentum integral equation on a flat plate is ax) Ud(u/U) Ху 1m The displacement thickncss and the momentum thickness are Freestream velocity is 1.0 m/s. The fluid viscosity and density are 1.55 x 10 m'ls and 1.23 kg/m, respectively...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT