Question

Consider laminar flow of an incompressible fluid past a flat plate. The boundary layer velocity profile is given as u = U sin

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Here condition given is, incompressible fluid vel. Profile 4 u sin(TY) 100 - for caminar flow, Bordndary layer from Blasius s

C incompressible How2 0-) (1-4(9) Jody (ja som nesille - jos may) l. vsing )cy - sind . ) (- sin(974)ody :[Sm[- (1 - 104(ny)

Friction dsay co-efficient, Co=1.328 su.x M ✓ Rex a 1.328 (S. u.sinty ) ..

Add a comment
Know the answer?
Add Answer to:
Consider laminar flow of an incompressible fluid past a flat plate. The boundary layer velocity profile...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (b) For a laminar boundary layer on a flat plate the velocity profile uly) is given...

    (b) For a laminar boundary layer on a flat plate the velocity profile uly) is given by 0-30:48) where U is the free stream velocity, y is the distance measured normal to the surface of the plate and is the boundary layer thickness. Determine equations for (i) the momentum thickness , and (8 marks) (ii) the boundary layer thickness d. (7 marks)

  • A fluid flow over a solid surface with a laminar boundary layer velocity profile is approximated...

    A fluid flow over a solid surface with a laminar boundary layer velocity profile is approximated by the following equation: Ý = 2 () – ()* for y so and, 4 = 0 for y> 8 i). Show that this velocity profile satisfies the appropriate boundary conditions. ii) Determine the boundary layer thickness, 8 = 8(x) by using the momentum integral equation for the equation in Question 3(b)(i).

  • 3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on...

    3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on the surface. Assume the boundary (a). Wall shear stress, Fj)! layer bas a cubic velocity profile: (b). Boundary layer thickness, x)! (c). Shape factor (H-8t/0) Momentum integral equation on a flat plate is ax) Ud(u/U) Ху 1m The displacement thickncss and the momentum thickness are Freestream velocity is 1.0 m/s. The fluid viscosity and density are 1.55 x 10 m'ls and 1.23 kg/m, respectively...

  • As shown in Fig. 1, the local velocity profile on a flat plate boundary layer is...

    As shown in Fig. 1, the local velocity profile on a flat plate boundary layer is uz(x, y)/V = an+bn', where 7 = y/8(x) is a non-dimensional vertical coordinate, 8(x) is the boundary-layer 00 thickness, x is the streamwise coordinate, y is the coordinate normal to the wall, and V is the freestream velocity. (a) Calculate the local skin friction drag using the following momentum integral formula (Hint: x and 8(x) are treated as constants in the integral) (15 points)...

  • A laminar boundary layer can be approximated by a velocity profile consisting in two linear segments, as shown in Fig. 2...

    A laminar boundary layer can be approximated by a velocity profile consisting in two linear segments, as shown in Fig. 2. Problem 2 A laminar boundary layer can be approximated by a velocity profile consisting in two linear seg- ments, as shown in Fig. 2 S/2 2U 3 U Figure 2: Boundary layer profile. Using the momentum integral method, determine the boundary layer height 6 (z) and the wall shear stress distribution TuTu (r). Compare your results with the Blasius...

  • JESTION 3 [15 MARKS nsider a flow along a flat plate with a boundary layer profile...

    JESTION 3 [15 MARKS nsider a flow along a flat plate with a boundary layer profile given by: u 3 y ang Von-Karman momentum integral equation method, determine the value of: i. boundary layer momentum thickness, 0/8 ii. boundary layer thickness, 8x iii. boundary layer displacement thickness. 8*x (15

  • 3. An incompressible, viscous fluid with density, p, flows past a solid flat plate which has...

    3. An incompressible, viscous fluid with density, p, flows past a solid flat plate which has a depth, b, into the page. The flow initially has a uniform velocity U., before contacting the plate. After contact with the plate at a distance x downstream from the leading edge, the flow velocity profile is altered due to the no-slip condition. The velocity profile at location x is approximated to have a linear shape, u = U. z for y s 8...

  • 1- Consider laminar flat plate flow with the following approximate velocity profile: U[ exp-5y/8)] which satisfies the...

    1- Consider laminar flat plate flow with the following approximate velocity profile: U[ exp-5y/8)] which satisfies the conditions u = 0.993U at y = S. (a) Use this 0 at y 0 and u= profile in the two-dimensional momentum integral relation to evaluate the approximate boundary layer thickness variation S(x). Assume zero pressure gradient. (b) Now explain why your result in part (a) is deplorably inaccurate compared to the exact Blasius solution Scanned uww Cam Scanner 1- Consider laminar flat...

  • Problem 1 An incompressible, viscous fluid with density, p, flows past a solid flat plate which...

    Problem 1 An incompressible, viscous fluid with density, p, flows past a solid flat plate which has a width, b, into the page. The flow initially has a uniform velocity U before contacting the plate. The velocity profile at location x is estimated to have a parabolic shape, u-u[(Y)-(,)21"for ysiand u-vfor y 20 where isthe boundary layer thickness. (a) Determine the upstream height from the plate, h, of a streamline which has a height, 6, at the downstream location, x....

  • d) Figure 1 below shows the concentration profile of laminar flow fluid past a flat plate....

    d) Figure 1 below shows the concentration profile of laminar flow fluid past a flat plate. The mass transfer coefficient for the boundary layer can be calculated using equation 1. By applying Blasius solution, derive equation 1 below. CA edge of concentration boundary layer 8 CAS - kl = Sh = 0.664Re7/2Sc1/3 Equation 1 DAB (8 Marks)

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT