Question

A fluid flow over a solid surface with a laminar boundary layer velocity profile is approximated by the following equation: Ý

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Anques! Given velocity profile -2(88) -(86)* for 848 u=0 for yo78 U -U: . u=uo for laminar lition flow Brounday At Yao, 1500Momentum : Guven velocity profile sclesfied the boundary conditions con remonto natural question :- s momention therness BDTxrgl (8) - (1) : 3 о: 2 е а: 8 o-x av

Add a comment
Know the answer?
Add Answer to:
A fluid flow over a solid surface with a laminar boundary layer velocity profile is approximated...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (b) For a laminar boundary layer on a flat plate the velocity profile uly) is given...

    (b) For a laminar boundary layer on a flat plate the velocity profile uly) is given by 0-30:48) where U is the free stream velocity, y is the distance measured normal to the surface of the plate and is the boundary layer thickness. Determine equations for (i) the momentum thickness , and (8 marks) (ii) the boundary layer thickness d. (7 marks)

  • A laminar boundary layer can be approximated by a velocity profile consisting in two linear segments, as shown in Fig. 2...

    A laminar boundary layer can be approximated by a velocity profile consisting in two linear segments, as shown in Fig. 2. Problem 2 A laminar boundary layer can be approximated by a velocity profile consisting in two linear seg- ments, as shown in Fig. 2 S/2 2U 3 U Figure 2: Boundary layer profile. Using the momentum integral method, determine the boundary layer height 6 (z) and the wall shear stress distribution TuTu (r). Compare your results with the Blasius...

  • Consider laminar flow of an incompressible fluid past a flat plate. The boundary layer velocity profile...

    Consider laminar flow of an incompressible fluid past a flat plate. The boundary layer velocity profile is given as u = U sin () a. Determine the boundary layer thicknesses 8, 8, as a function of x. Express in terms of Reynolds number. b. Using momentum integral theory, determine the wall shear stress tw, as a func. of x. Express in terms of Reynolds number. C. Determine the friction drag coefficient, Cof-

  • QUESTION 3 a) The velocity of a fluid over a solid surface can be assumed to...

    QUESTION 3 a) The velocity of a fluid over a solid surface can be assumed to obey the Prandtl power law as shown by the equation below. The equation shows that the velocity of the fluid varies with the thickness of boundary layer, 8. us Calculate the thickness of the laminar sub-layer when benzene flows through a pipe 50 mm in diameter at 2000 cm/s. What is the velocity of the benzene at the edge of the laminar sub-layer? Assume...

  • 1- Consider laminar flat plate flow with the following approximate velocity profile: U[ exp-5y/8)] which satisfies the...

    1- Consider laminar flat plate flow with the following approximate velocity profile: U[ exp-5y/8)] which satisfies the conditions u = 0.993U at y = S. (a) Use this 0 at y 0 and u= profile in the two-dimensional momentum integral relation to evaluate the approximate boundary layer thickness variation S(x). Assume zero pressure gradient. (b) Now explain why your result in part (a) is deplorably inaccurate compared to the exact Blasius solution Scanned uww Cam Scanner 1- Consider laminar flat...

  • JESTION 3 [15 MARKS nsider a flow along a flat plate with a boundary layer profile...

    JESTION 3 [15 MARKS nsider a flow along a flat plate with a boundary layer profile given by: u 3 y ang Von-Karman momentum integral equation method, determine the value of: i. boundary layer momentum thickness, 0/8 ii. boundary layer thickness, 8x iii. boundary layer displacement thickness. 8*x (15

  • 3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on...

    3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on the surface. Assume the boundary (a). Wall shear stress, Fj)! layer bas a cubic velocity profile: (b). Boundary layer thickness, x)! (c). Shape factor (H-8t/0) Momentum integral equation on a flat plate is ax) Ud(u/U) Ху 1m The displacement thickncss and the momentum thickness are Freestream velocity is 1.0 m/s. The fluid viscosity and density are 1.55 x 10 m'ls and 1.23 kg/m, respectively...

  • The velocity profile for a turbulent boundary layer over a flat plate is to be approximated...

    The velocity profile for a turbulent boundary layer over a flat plate is to be approximated by the expression и an"* +b7072 where n=y/8 U a) (10P) Evaluate the coefficients a and b b) (20P) Obtain an expression for 8/x c) (5P) Obtain an expression for shear stress coefficient Cf. d) (5P) Draw velocity profile precisely.

  • Use the integral method for boundary layer flow and convective heat transfer over a flat plate he...

    Use the integral method for boundary layer flow and convective heat transfer over a flat plate heated by maintaining a constant heat flux q"w, for the case of very low Prandtl number, Pr0. Assume that the free stream velocity of the fluid, U, and free stream temperature, T-do not vary with x. Using the integral form of energy equation, show that under these conditions: (a) the temperature profile, (T- T) is given by, 41 2 CT-T oa (b) the wall...

  • 2. For a boundary layer flow with U suction velocity Vo (0 is introduced at the...

    2. For a boundary layer flow with U suction velocity Vo (0 is introduced at the wall to delay flow separation. (a) By integrating the boundary layer equations from porous wall across the boundary layer, show that the integral momentum equation is given by -constant over a porous plate as shown in Figure 1, a Ou where τνν-μ w- 1 оу y-o and (b) obtain the integral energy equation. (c) Perform the dimensionless analysis on the integral equations and discuss...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT