Question

Capacitor C1 is connected across a battery of 5 V. An identical capacitor C2 is connected...

Capacitor C1 is connected across a battery of 5 V. An identical capacitor C2 is connected across a battery of 10 V. A dielectric of dielectric constant / is inserted in the gap of C1. What must / be to have the same charge on both capacitors

A) 4

B) 2

C) 1.5

0 0
Add a comment Improve this question Transcribed image text
Answer #1

We lnow that charge on a capacitor C connected across voltage V, is Q=CV, and capacitance value with dielectric constant k is C'=kC. So for the same charge on C1 and C2 , we get,C1.V1=C2.V2. Therefore. We have the dielectric constant for C2 is 2. So that same charge on both capacitor. Hence correct oprtion is B)2 . THANK YOU. PLEASE LIKE THE ANSWER ASAP

Add a comment
Know the answer?
Add Answer to:
Capacitor C1 is connected across a battery of 5 V. An identical capacitor C2 is connected...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two air-filled parallel-plate capacitors with capacitances C1 and C2 are connected in series to a battery...

    Two air-filled parallel-plate capacitors with capacitances C1 and C2 are connected in series to a battery that has voltage V; C1 = 3.00 μF and C2 = 6.00 μF. The electric field between the plates of capacitor C2 is E02. While the two capacitors remain connected to the battery, a dielectric with dielectric constant K = 4 is inserted between the plates of capacitor C1, completely filling the space between them. After the dielectric is inserted in C1, the electric...

  • Question 11 (4 points) Saved Capacitor C1 is connected across a battery 15 V. A capacitor...

    Question 11 (4 points) Saved Capacitor C1 is connected across a battery 15 V. A capacitor 2C1 is connected across a battery of 8 V. Which one has more charge? it depends on other factors both have the same charge C1 C2

  • Two capacitors are connected to each other and the battery is removed. The voltage across each...

    Two capacitors are connected to each other and the battery is removed. The voltage across each capacitor is 5.5 volts. V = V1 = V2 = 5.5 V. The capacitance of C1 = 1.0 x 10 ^-6 F and the capacitance of C2= 2.0 x 10 ^-6 F. What is the charge on each capacitor? If the gap between the plates of C1 if filled with paraffin (dielectric constant K=2.2) what is the new charge on each capacitor and what...

  • A 2.0 μF parallel-plate air-filled capacitor is connected across a 10 V battery. (a) Determine the...

    A 2.0 μF parallel-plate air-filled capacitor is connected across a 10 V battery. (a) Determine the charge on the capacitor and the energy stored in the capacitor. (b) An identical 2.0 μF parallel-plate air-filled capacitor is connected across a 5 V battery, and a dielectric slab with dielectric constant κ is inserted between the plates of the capacitor, completely filling the region between the plates, while the battery remains connected. The energy stored in this capacitor is four times that...

  • Two capacitors, C1 = 26.0 μF and C2=37.0 μF, are connected in series, and a 9.0-v battery is connected across them.

    Two capacitors, C1 = 26.0 μF and C2=37.0 μF, are connected in series, and a 9.0-v battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor(b) Find the energy stored in each individual capacitor(c) If the same capacitors were connected in parallel, what potential difference would be required across them so that the combination stores the same energy as in part (a)? Which capacitor stores more energy in this situation, C1 or C2?  

  • 1. Identical capacitors A and B are fully charged by the same battery. Capacitor A is...

    1. Identical capacitors A and B are fully charged by the same battery. Capacitor A is disconnected from the battery while capacitor B remains connected to it. Identical dielectric slabs are inserted between the plates of the capacitors. Which of the following is true? 2. A parallel plate capacitor (shown) is fully charged and remains connected to the battery. A conducting plate is inserted into the gap between the two plates, partially filling the gap. Which of the following is...

  • Suppose you have a 9 V battery, a C1 = 4.9 µF capacitor, and a C2...

    Suppose you have a 9 V battery, a C1 = 4.9 µF capacitor, and a C2 = 8.3 µF capacitor. Find the charge stored in the combination if the capacitors are connected to the battery in parallel. You need to express your answer in µC. 1 µC = 10-6 C

  • The battery provides V-52 volts. The capacitors are C1-5 pF, C2-5 pF, and C3-4 pF Calculate...

    The battery provides V-52 volts. The capacitors are C1-5 pF, C2-5 pF, and C3-4 pF Calculate the voltage across capacitor C3 PAPER SOLUTION Solve the problem on paper first, including all four IDEA steps. You will become a better physicist that way! Have you finished your paper solution already? Oyes no INTERPRET Identify all of the true statements. A. The charge on C2 is equal to the charge on C3 because they are connected in parallel. C. The voltage across...

  • Two capacitors, C1 = 28.0 μF and C2 = 35.0 μF, are connected in series, and...

    Two capacitors, C1 = 28.0 μF and C2 = 35.0 μF, are connected in series, and a 9.0-V battery is connected across them. (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor. equivalent capacitance ______ μF total energy stored _______ J (b) Find the energy stored in each individual capacitor. energy stored in C1 ______ J energy stored in C2 ______ J Show that the sum of these two energies is the same as the energy...

  • Two capacitors, C119.0 F and C2 32.0 uf are connected in series, and a 9.0-V battery...

    Two capacitors, C119.0 F and C2 32.0 uf are connected in series, and a 9.0-V battery is connected across them (a) Find the equivalent capacitance, and the energy contained in this equivalent capacitor. equivalent capacitance total energy stored (b) Find the energy stored in each individual capacitor. energy stored in C1 energy stored in C2 Show that the sum of these two energies is the same as the energy found in part (a). Will this equality always be true, or...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT