Question

A thin rod (length = 2.98 m) is oriented vertically, with its bottom end attached to...

A thin rod (length = 2.98 m) is oriented vertically, with its bottom end attached to the floor by means of a frictionless hinge. The mass of the rod my be ignored, compared to the mass of an object fixed to the top of the rod. The rod, starting from rest, tips over and rotates downward. What is the angular speed of the rod just before it strikes the floor? Consider using the principle of conservation of mechanical energy.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A thin rod (length = 2.98 m) is oriented vertically, with its bottom end attached to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A thin rod (length 2.24 m) is oriented vertically, with its bottom end attached to the...

    A thin rod (length 2.24 m) is oriented vertically, with its bottom end attached to the floor by means of a frictionless hinge. The mass of the rod may be ignored, compared to the mass of the object fixed to the top of the rod. The rod, starting from rest, tips over and rotates downward. (a) What is the angular speed of the rod just before it strikes the floor? (Hint: Consider using the principle of conservation of mechanical energy.)(b)...

  • A thin uniform rod (of mass 10.0kg and length of 1.20m) is attached to a friction-free...

    A thin uniform rod (of mass 10.0kg and length of 1.20m) is attached to a friction-free pivot. Initially, the rod is balanced vertically above the pivot (position A in Figure A2.18). If the rod falls from rest, calculate the angular acceleration at position B. the angular velocity at position C. A thin uniform rod (of mass 10.0kg and length of 1.20 m) is attached to a friction-free pivot. Initially, the rod is balanced vertically above the pivot (position A in...

  • A uniform thin rod of length 0.500 m and mass 4.00 kg is attached to a...

    A uniform thin rod of length 0.500 m and mass 4.00 kg is attached to a pivot at one end. The other end of the rod is attached to a uniform sphere with a mass of 2.00 kg and a radius of 0.100 m. The rod and sphere initially hang vertically. A bullet with a mass of 5.00 g is fired horizontally at a speed of 200 m/s into the center of the sphere. The bullet embeds itself in the...

  • The assembly shown in the figure below consists of a thin rod of length l = 23.9 cm and mass m = 1.20 kg with a solid ball of diameter d = 10.0 cm and mass M = 2.00 kg attached to its top.

    The assembly shown in the figure below consists of a thin rod of length l = 23.9 cm and mass m = 1.20 kg with a solid ball of diameter d = 10.0 cm and mass M = 2.00 kg attached to its top. The assembly is free to pivot about a frictionless axle through the bottom of the rod. The assembly is initially vertical and at rest when it starts to rotate clockwise. (a) After the combination rotates through 90...

  • A uniform rod has mass m and length L. One end of the rod is attached...

    A uniform rod has mass m and length L. One end of the rod is attached to a fixed point O by a hinge at the top of a wall and an additional force F is applied to the other end of the rod in the horizontal direction shown. Given that the rod is in mechanical equilibrium, what is the magnitude of the applied force F, expressed as a numerical multiple of mg, where g is the magnitude of the...

  • 1. A thin rod of mass M and length d hangs vertically from a frictionless pivot...

    1. A thin rod of mass M and length d hangs vertically from a frictionless pivot attached to one end. A piece of clay of mass m moving horizontally at a speed v hits the rod a distance x from the pivot and sticks to it. Discussion Questions: (In the first 5-10 min a random group will be selected to explain.) • What “type” of collision is happening? What is and is not conserved? • Consider the analogous linear momentum...

  • A long, thin rod of mass M and length L is standing straight up on a...

    A long, thin rod of mass M and length L is standing straight up on a table. Its lower end rotates on a frictionless pivot. A very slight push causes the rod to fall over. A. As it hits the table, what is the angular velocity of the tip of the rod? B. What is the speed of the tip of the rod?

  • A thin rod has a length of 0.834 m and rotates in a circle on a...

    A thin rod has a length of 0.834 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.610 rad/s and a moment of inertia of 1.42 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5 x 10-3 kg) gets...

  • A thin rod has a length of 0.266 m and rotates in a circle on a...

    A thin rod has a length of 0.266 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.796 rad/s and a moment of inertia of 1.19 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5 x 10-3 kg) gets...

  • A thin rod has a length of 0.109 m and rotates in a circle on a...

    A thin rod has a length of 0.109 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.923 rad/s and a moment of inertia of 1.40 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5 x 10-3 kg) gets...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT