Question

1) Heat is being transferred to 1 kg of H2O (initially at 1 bar and 20oC)...

1) Heat is being transferred to 1 kg of H2O (initially at 1 bar and 20oC) in a piston-cylinder arrangement by convection heat transfer through the bottom of the cylinder (which has a surface area of 1m2). The air temperature is constant at 120oC. If it takes 100s to bring H2O to saturated vapor state at 1 bar, determine the convection heat transfer coefficient between the bottom of the cylinder and the air.

Note 1: The sides and the top of the cylinder can be considered adiabatic in order to simplify the problem.

Note 2: The piston and the cylinder material is very thin and can, therefore, be assumed to be at the same temperature with water at all times.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
1) Heat is being transferred to 1 kg of H2O (initially at 1 bar and 20oC)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2 kg Water in a vertical piston cylinder arrangement, is initially at saturated liquid state at...

    2 kg Water in a vertical piston cylinder arrangement, is initially at saturated liquid state at 3 bar. It is heated and undergoes constant pressure expansion to a state of saturated vapor. What is the work done by the piston cylinder arrangement to the environment? Neglect the mass of the piston, piston friction, kinetic and potential energy changes. Hint: this is a closed system problem, remember control volume boundary work concept. What is the heat transfer into the water?

  • 1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of...

    1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of 4.2 m3, is heated to a final pressure of 9.4 bar. Assuming the ideal gas model with k = 1.6 for the argon, determine the heat transfer, in kJ. 2.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 223°C from a pressure of 5.4 bar to a pressure of 1.9 bar. Evaluate the work, in kJ/kg. 3.A mass of 4 kilograms...

  • 2) A) Water, initially saturated vapor at 10.8 bar, fills a closed, rigid container. The water...

    2) A) Water, initially saturated vapor at 10.8 bar, fills a closed, rigid container. The water is heated until its temperature is 200°C. For the water, determine the heat transfer, in kJ/kg. Kinetic and potential energy effects can be ignored. B) A piston-cylinder assembly contains 2 kg of water at 210.6oC and 3 bar. The water is compressed to a saturated vapor state where the pressure is 50.7 bar. During compression, there is a heat transfer of energy from the...

  • Water in a piston-cylinder assembly is initially at a pressure of 10 bar and a temperature...

    Water in a piston-cylinder assembly is initially at a pressure of 10 bar and a temperature of 500 C. The water is cooled and compressed at constant pressure until it becomes a saturated vapor. The water is then cooled at a constant volume until it reaches a temperature of 150 C. a) Sketch both processes on T-v and p-v diagrams (v here is specific volume). b) Determine the total work for the overall processes. c) Determine the heat transfer for...

  • A piston-cylinder device initially contains 1.78 kg saturated liquid water at 200°C. Now heat is transferred...

    A piston-cylinder device initially contains 1.78 kg saturated liquid water at 200°C. Now heat is transferred to the water until the volume quadruples and the cylinder contains saturated vapor only. Determine (a) the final volume of the tank, m (Round to six decimal places.) (b) the final temperature and pressure, MPa and (c) the internal energy change of the water kJ 0 Water 1.78 kg 200 C

  • 1.) a) Water in a piston–cylinder assembly undergoes a constant-pressure process at 30 bar from T1...

    1.) a) Water in a piston–cylinder assembly undergoes a constant-pressure process at 30 bar from T1 = 255.1°C to saturated vapor. Determine the work for the process, in kJ per kg of water. b) A piston-cylinder assembly contains 4.4 kg of water at 238oC and 3 bar. The water is compressed to a saturated vapor state where the pressure is 53.9 bar. During compression, there is a heat transfer of energy from the water to its surroundings having a magnitude...

  • Air contained in a piston-cylinder assembly, initially at 2 bar, 200 K, and a volume of 1 L, unde...

    Air contained in a piston-cylinder assembly, initially at 2 bar, 200 K, and a volume of 1 L, undergoes a process to a final state where the pressure is 8 bar and the volume is 2 L During the process, the pressure-volume relationship is linear. Assuming the ideal gas model for the air, determine the work and heat transfer, each in kJ. 4. Air contained in a piston-cylinder assembly, initially at 2 bar, 200 K, and a volume of 1...

  • A frictionless vertical piston-cylinder device contains 3 kg of H2O initially at T1 = 180°C and...

    A frictionless vertical piston-cylinder device contains 3 kg of H2O initially at T1 = 180°C and p1 = 50 bar. The device is heated until the temperature is T2 = 400°C. Assume a quasiequillibrium process which occurs slowly with no acceleration as the piston moves. Kinetic and potential energy effects are negligible. Determine: a. work (kJ) during process (indicate magnitude and direction) b. heat transfer (kJ) during process (indicate magnitude and direction)

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • 5. (a)Consider adiabatic compression of 2 kg of air in a piston-cylinder assembly from 1 bar...

    5. (a)Consider adiabatic compression of 2 kg of air in a piston-cylinder assembly from 1 bar and 330 K (State 1) to 14 bar and 700 K (State 2). Air can be considered an ideal gas at these conditions and molecular weight of air is 28.97 kg/kmol. Find the entropy of air in State 1 and State 2. Using the entropy balance equation for a closed system calculate the entropy generation (kJ/K) during the compression process. (b) If entropy decreases...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT