Question

2.00 mole ideal gas is first confined in 8.00L at 127 oC and then expands by...

2.00 mole ideal gas is first confined in 8.00L at 127 oC and then expands by following an isobaric path to a volume of 16L. Calculate ∆U, w , Q and ∆H

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
2.00 mole ideal gas is first confined in 8.00L at 127 oC and then expands by...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • One mole of ideal gas is confined in a cylinder by a piston and is in...

    One mole of ideal gas is confined in a cylinder by a piston and is in the thermal contact with a heat reservoir with T=To. As a result, gas slowly expands from V1 to V2 while at the same temperature To. The internal energy of the gas does not change. Calculate work done by the gas and the heat flow into the gas.

  • 7) A 1.20 mole sample of an ideal gas at 28.0°C expands isothermally from an initial...

    7) A 1.20 mole sample of an ideal gas at 28.0°C expands isothermally from an initial volume of 24 dm to a final volume of 75 dm3. Calculate w for the following processes: (a) an expansion against an external pressure of 0.5x 105 Pa (b) a reversible expansion. Please give these quantities in joules. This may involve unit conversion(s).

  • An ideal gas is confined to a container with adjustable volume. The pressure and mole number...

    An ideal gas is confined to a container with adjustable volume. The pressure and mole number are constant. By what factor will volume change if absolute temperature doubles?

  • Now consider a sample of 1 mole of a diatomic ideal gas that is initially at...

    Now consider a sample of 1 mole of a diatomic ideal gas that is initially at a temperature of 265 kelvin and volume of .2 m^3. The gas first undergoes an isobaric expansion, such that its temperature increases by 120 kelvin. It then undergoes an adiabatic expansion so that its final volume is .360 m^3 a) What is the initial pressure of the gas, in kPa? b) What is the total heat transfer, Q, to the gas, in J? c)...

  • 4. One mole of monoatomic ideal gas, initially at 27 oC and 1 bar, is heated...

    4. One mole of monoatomic ideal gas, initially at 27 oC and 1 bar, is heated and allowed to expand reversibly against constant pressure of 1 bar until the final temperature is 127 °C. 4.1 What are the initial (Vi) and final (V2) volumes of the gas? 4.2 Calculate the work (w) that the gas does during this expansion. 4.3 Calculate the internal energy change (AU) of this expansion process 4.4 Calculate the enthalpy change (AH) of this expansion process.

  • One mole of an ideal gas with CP = (7/2)R and CV = (5/2)R expands from...

    One mole of an ideal gas with CP = (7/2)R and CV = (5/2)R expands from P1 = 8 bar and T1 = 630 K to P2 = 1 bar. Take the value of R as 8.314 J·mol-1·k-1. At constant volume (assume mechanical reversibility), find the value of W, Q, ΔU, and ΔH? rt.)

  • Please help me about Physics, Thanks. A sample of 1.00 mole of a diatomic ideal gas...

    Please help me about Physics, Thanks. A sample of 1.00 mole of a diatomic ideal gas is intially at temperature 265K........... Thermodynamic Processes involving Ideal Gases-in-class worksheet-(5 points) PHYS 181 Question B (B.) A sample of 1.00 mole of a diatomic ideal gas is initially at temperature 265 K and volume 0.200 m. The gas first undergoes an isobaric expansion, such that its temperature increases by 120.0 K. It then undergoes an adiabatic expansion so that its final volume is...

  • 3 1. One mole of an ideal gas expands isothermally at T = 20°C from 1.2...

    3 1. One mole of an ideal gas expands isothermally at T = 20°C from 1.2 m² to 1.8 m². The gas constant is given by R= 8.314 J/mol K). (a) Calculate the work done by the gas during the isothermal expansion. W= (b) Calculate the heat transfered during the expansion Q= (c) What is the change in entropy of the gas? AS аук (c) What is the entropy change of the thermal reservoir? AS reservar JK (d) What is...

  • A 2.5 mole sample of an ideal gas expands reversibly and isothermally at 360 K until...

    A 2.5 mole sample of an ideal gas expands reversibly and isothermally at 360 K until its volume is doubled. What is the increase in entropy of the gas?

  • One mole of an ideal monatomic gas is expanded from an initial state at 3 bar...

    One mole of an ideal monatomic gas is expanded from an initial state at 3 bar and 450 K to a final state at 2 bar and 250 K. Choose two different paths for this expansion, specify them carefully, and calculate w and q for each path. Calculate ?U and ?S for each path.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT