Question

A mass is placed at the free end of a light compressed spring on a horizontal...

A mass is placed at the free end of a light compressed spring on a horizontal frictionless surface. The force constant of the spring is 115 N/m. The spring has been compressed 0.200 m from it neutral position. How fast will the mass move as it passes the neutral position of the spring after being released?

mass = 1.0 kg
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A mass is placed at the free end of a light compressed spring on a horizontal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A block of mass is placed on a horizontal surface and attached to the free end...

    A block of mass is placed on a horizontal surface and attached to the free end of a spring. When the spring is neither stretched nor compressed, it exerts no force on the block. When the block is displaced from this position the force on it due to the spring is equal to 250 N/m times the distance the block is displaced. If the coefficient of static friction between the block and the surface is 0.24, how far from this...

  • A 4.86 kg block free to move on a horizontal, frictionless surface is attached to one...

    A 4.86 kg block free to move on a horizontal, frictionless surface is attached to one end of a light horizontal spring. The other end of the spring is fixed. The spring is compressed 0.104 m from equilibrium and is then released. The speed of the block is 1.01 m/s when it passes the equilibrium position of the spring. The same experiment is now repeated with the frictionless surface replaced by a surface for which $\mu$k = 0.275. Determine the...

  • A 0.64 kg mass is attached to a light spring with a force constant of 23.9...

    A 0.64 kg mass is attached to a light spring with a force constant of 23.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass _____ m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm _____ m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium...

  • A block of mass 2.0 kg is attached to a horizontal spring that has a force...

    A block of mass 2.0 kg is attached to a horizontal spring that has a force constant of 1200 N/m as shown in the figure. The spring is compressed 10.0 cm and is then released from rest as in the figure. (a) Calculate the speed of the block as it passes through the equilibrium position x=0 if the surface is frictionless. (b) Calculate the speed of the block as it passes through the equilibrium position if a constant friction force...

  • A 0.76 kg mass is attached to a light spring with a force constant of 27.9...

    A 0.76 kg mass is attached to a light spring with a force constant of 27.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A 0.56 kg mass is attached to a light spring with a force constant of 33.9...

    A 0.56 kg mass is attached to a light spring with a force constant of 33.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A 0.28 kg mass is attached to a light spring with a force constant of 34.9...

    A 0.28 kg mass is attached to a light spring with a force constant of 34.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A 0.40 kg mass is attached to a light spring with a force constant of 23.9...

    A 0.40 kg mass is attached to a light spring with a force constant of 23.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A 0.60 kg mass is attached to a light spring with a force constant of 30.9...

    A 0.60 kg mass is attached to a light spring with a force constant of 30.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

  • A 0.84 kq mass is attached to a light spring with a force constant of 34.9...

    A 0.84 kq mass is attached to a light spring with a force constant of 34.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT