Question

A block of mass is placed on a horizontal surface and attached to the free end...

A block of mass is placed on a horizontal surface and attached to the free end of a spring. When the spring is neither stretched nor compressed, it exerts no force on the block. When the block is displaced from this position the force on it due to the spring is equal to 250 N/m times the distance the block is displaced. If the coefficient of static friction between the block and the surface is 0.24, how far from this position can the block be pulled and then released so that it remains stationary? (mass is 3.1 kg).

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A block of mass is placed on a horizontal surface and attached to the free end...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Incline, Spring, and Friction: A block of mass 500 g is attached to a spring of...

    Incline, Spring, and Friction: A block of mass 500 g is attached to a spring of spring constant 80 N m−1. The other end of the spring is attached to a support while the mass rests on a rough surface with a coefficient of friction of 0.20 that is inclined at angle of 30◦ . The block is pushed along the surface till the spring compresses by 10 cm and is then released from rest. (a) Compute how much potential...

  • A block with a mass of 0.26 kg is attached to a horizontal spring. The block...

    A block with a mass of 0.26 kg is attached to a horizontal spring. The block is pulled back from its equilibrium position until the spring exerts a force of 1.2 N on the block. When the block is released, it oscillates with a frequency of 1.2 Hz. How far was the block pulled back before being released?

  • A spring lies on a horizontal table, and the left end of the spring is attached...

    A spring lies on a horizontal table, and the left end of the spring is attached to a wall. The other end is connected to a box. The box is pulled to the right, stretching the spring. Static friction exists between the box and the table, so when the spring is stretched only by a small amount and the box is released, the box does not move. The mass of the box is 0.75 kg, and the spring has a...

  • A block of mass mis attached to a horizontal spring and rests on a flat, smooth...

    A block of mass mis attached to a horizontal spring and rests on a flat, smooth surface as seen in the figure. The block can be pushed in the negative x- direction to compress the spring or pulled in the positive x-direction to stretch the spring. Where along the x-axis does the block have to be for the spring to have zero potential energy? Marked out of Flag estion ix=0 0 Select one: O a. The spring has zero potential...

  • 13.2) A 1.3 -kg block slides along a horizontal surface with a coefficient of friction μk...

    13.2) A 1.3 -kg block slides along a horizontal surface with a coefficient of friction μk = 0.274. The block has a speed v = 2.28 m/s when it strikes a massless spring head-on. a. If the spring has a force constant k = 30.9 N/m, how far is the spring compressed? b. What minimum value of the coefficient of static friction, μs, will assure the spring remains compressed at the maximum compressed position? c. If μs is less than...

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 465 N/m as shown in the figure below. The block is pulled to a position xi = 4.70 cm to the right of equilibrium and released from rest. A spring labeled k has its left end attached to a wall and its right end attached to a block labeled m. The block is initially at a location labeled x = 0. It...

  • co200.000 10.5 A block of mass 0.5 kg on a horizontal surface is attached to a...

    co200.000 10.5 A block of mass 0.5 kg on a horizontal surface is attached to a horizontal spring of negligible mass and spring constant 50 N/m. The other end of the spring is attached to a wall, and there is negligible friction between the block and the horizontal surface. When the spring is unstretched, the block is located at x = Om. The block is then pulled to x = 0.3m and released from rest so that the block-spring system...

  • A block of mass 2.0 kg is attached to a horizontal spring that has a force...

    A block of mass 2.0 kg is attached to a horizontal spring that has a force constant of 1200 N/m as shown in the figure. The spring is compressed 10.0 cm and is then released from rest as in the figure. (a) Calculate the speed of the block as it passes through the equilibrium position x=0 if the surface is frictionless. (b) Calculate the speed of the block as it passes through the equilibrium position if a constant friction force...

  • A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.65 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0300 m . The spring has force constant 830 N/m . The coefficient of kinetic friction between the floor and the block is 0.45 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0170 m from its initial position? (At this...

  • A 2.25 kg block on a horizontal floor is attached to a horizontal spring that is...

    A 2.25 kg block on a horizontal floor is attached to a horizontal spring that is initially compressed 0.0400 m . The spring has force constant 890 N/m . The coefficient of kinetic friction between the floor and the block is 0.38 . The block and spring are released from rest and the block slides along the floor. What is the speed of the block when it has moved a distance of 0.0200 m from its initial position? (At this...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT