Question

A spring lies on a horizontal table, and the left end of the spring is attached...

A spring lies on a horizontal table, and the left end of the spring is attached to a wall. The other end is connected to a box. The box is pulled to the right, stretching the spring. Static friction exists between the box and the table, so when the spring is stretched only by a small amount and the box is released, the box does not move. The mass of the box is 0.75 kg, and the spring has a spring constant of 52 N/m. The coefficient of static friction between the box and the table on which it rests is μs = 0.78. How far can the spring be stretched from its unstrained position without the box moving when it is released?

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
A spring lies on a horizontal table, and the left end of the spring is attached...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A horizontal spring is lying on a frictionless surface. One end of the spring is attached...

    A horizontal spring is lying on a frictionless surface. One end of the spring is attached to a wall whle the other end is connected to a movable object. The spring and object are compressed by 0.082 m, released from rest, and subsequently oscillate back and forth with an angular frequency of 11.9 rad/s. What is the speed of the object at the instant when the spring is stretched by 0.041 m relative to its unstrained length? _______ m/s

  • A block of mass is placed on a horizontal surface and attached to the free end...

    A block of mass is placed on a horizontal surface and attached to the free end of a spring. When the spring is neither stretched nor compressed, it exerts no force on the block. When the block is displaced from this position the force on it due to the spring is equal to 250 N/m times the distance the block is displaced. If the coefficient of static friction between the block and the surface is 0.24, how far from this...

  • A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The oth...

    A block with mass M rests on a frictionless surface and is connected to a horizontal spring of force constant k. The other end of the spring is attached to a wall. A second block with mass m rests on top of the first block. The coefficient of static friction between the a blocks is μs. a) Find the maximum amplitude of oscillation such that the top block will not slip on the bottom block. b) Suppose the coefficient of...

  • A horizontal spring is lying on a frictionless surface. One end of the spring is attaches...

    A horizontal spring is lying on a frictionless surface. One end of the spring is attaches to a wall while the other end is connected to a movable object. The spring and object are compressed by 0.070 m, released from rest, and subsequently oscillate back and forth with an angular frequency of 16.0 rad/s. What is the speed of the object at the instant when the spring is stretched by 0.041 m relative to its unstrained length?

  • A first block with m(1)=2.00 kg lies at rest on a frictionless table. An ideal spring,...

    A first block with m(1)=2.00 kg lies at rest on a frictionless table. An ideal spring, with a spring constant of 100 N/m is attached to the wall and to the block. A second block with m(2)=0.50 kg is placed on top of the first block. The first block is gently pulled to a position x = + A and released from rest. There is a coefficient of static friction of 0.45 between the two blocks. (a) What is the...

  • A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10,...

    A block rests on a frictionless horizontal surface and is attached to a spring..... Chapter 10, Problem 81 A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 9.8 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled "x=0m." The drawing also shows a small bottle located 0.080 m to...

  • A block rests on a frictionless horizontal surface and is attached to a spring. When set...

    A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 5.0 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled ''x = 0 m.'' The drawing also shows a small bottle located 0.080 m to the right of this position. The block is pulled to the right, stretching the spring...

  • A 0.2-kg block on a horizontal, frictionless surface is attached to a horizontal spring. The spring...

    A 0.2-kg block on a horizontal, frictionless surface is attached to a horizontal spring. The spring constant is k = 600 N/m. The block is pulled to the right until it is a distance of 0.08 m from the unstrained position and released from rest. What is the kinetic energy of the block when it is 0.06 m from the unstrained position?

  • A mass rests on a frictionless surface and is attached to the end of a spring....

    A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring is stretched... I would appreciate to have a detailed explanation for the last one. Thank you in advance. A mass rests on a frictionless surface and is attached to the end of a spring. The mass is pulled so that the spring Is stretched. The mass Is then released, and It starts oscillating back and forth...

  • A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion,...

    A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 7.2 rad/s. The drawing indicates the position of the block when the spring is unstrained. This position is labeled "x = 0 m." The drawing also shows a small bottle located 0.079 m to the right of this position. The block is pulled to the right, stretching the spring...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT