Question

How does recombination impact genetic variation in future generations? Make sure you discuss crossing over and...

How does recombination impact genetic variation in future generations? Make sure you discuss crossing over and meiosis in your answer

0 0
Add a comment Improve this question Transcribed image text
Answer #1

How does recombination impact genetic variation in future generations? Make sure you discuss crossing over and meiosis in your answer

answer:

Genetic variation can be caused by mutation (which can create entirely new alleles in a population), random mating, random fertilization, and recombination between homologous chromosomes during meiosis (which reshuffles alleles within an organism's offspring).

Sources of Genetic Variation

Gene duplication, mutation, or other processes can produce new genes and alleles and increase genetic variation. New genetic variation can be created within generations in a population, so a population with rapid reproduction rates will probably have high genetic variation. However, existing genes can be arranged in new ways from chromosomal crossing over and recombination in sexual reproduction. Overall, the main sources of genetic variation are the formation of new alleles, the altering of gene number or position, rapid reproduction, and sexual reproduction.

Genetic variation is increased by meiosis

During fertilization, 1 gamete from each parent combines to form a zygote. Because of recombination and independent assortment in meiosis, each gamete contains a different set of DNA. This produces a unique combination of genes in the resulting zygote.

Recombination or crossing over occurs during prophase I. Homologous chromosomes – 1 inherited from each parent – pair along their lengths, gene by gene. Breaks occur along the chromosomes, and they rejoin, trading some of their genes. The chromosomes now have genes in a unique combination.

Independent assortment is the process where the chromosomes move randomly to separate poles during meiosis. A gamete will end up with 23 chromosomes after meiosis, but independent assortment means that each gamete will have 1 of many different combinations of chromosomes.

This reshuffling of genes into unique combinations increases the genetic variation in a population and explains the variation we see between siblings with the same parents.

Phases of meiosis

Crossing Over

During prophase of meiosis I, the double-chromatid homologous pairs of chromosomes cross over with each other and often exchange chromosome segments. This recombination creates genetic diversity by allowing genes from each parent to intermix, resulting in chromosomes with a different genetic complement. The exchange occurs between non-sister chromatids. Because genes often interact with each other, the new combination of genes on a chromosome can lead to new traits in offspring.

Add a comment
Know the answer?
Add Answer to:
How does recombination impact genetic variation in future generations? Make sure you discuss crossing over and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT