Question

This is from the suplemental S3 matter and interactions. The lenght given is 1.9 meters, y=.04...

This is from the suplemental S3 matter and interactions. The lenght given is 1.9 meters, y=.04 meters, v=83m/s, amplitude is .02m, wavelength is .633 meters. What is the period?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Comment for any further help.

Add a comment
Know the answer?
Add Answer to:
This is from the suplemental S3 matter and interactions. The lenght given is 1.9 meters, y=.04...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A ferris wheel is 30 meters in diameter and boarded from a platform that is 2...

    A ferris wheel is 30 meters in diameter and boarded from a platform that is 2 meters above the ground. The six o'clock position on the ferris wheel is level with the loading platform. The wheel completes 1 full revolution in 8 minutes. The function h = f(t) gives your height in meters above the ground t minutes after the wheel begins to turn. What is the Amplitude?  meters What is the Midline? y =  meters What is the Period? y =  minutes...

  • 8. A wave in a string has a wave function given by: y (x, t) =...

    8. A wave in a string has a wave function given by: y (x, t) = (0.0200m) sin [(6.35 m^-1) x + (2.63 s^-1) t] where t is expressed in seconds and x in meters. Determine: (10 points) a) the amplitude of the wave b) the frequency of the wave c) wavelength of the wave d) the speed of the wave

  • A wave is described by y = 0.020 8 sin(kx - wt), where k = 2.22 rad/m, w = 3.66 rad/s, x and y are in meters, and t is in seconds

    6. A wave is described by y = 0.020 8 sin(kx - wt), where k = 2.22 rad/m, w = 3.66 rad/s, x and y are in meters, and t is in seconds. (a) Determine the amplitude of the wave. (b) Determine the wavelength of the wave. (c) Determine the frequency of the wave. (d) Determine the speed of the wave. 7. When a particular wire is vibrating with a frequency of 3.00 Hz, a transverse wave of wavelength 64.0 cm is produced. Determine the...

  • A transverse wave is given by the following equation: y (x,t) = (2.45 cm) cos [(0.420...

    A transverse wave is given by the following equation: y (x,t) = (2.45 cm) cos [(0.420 rad/cm)x + (5.20 rad/s)t] a) What are the wave's amplitude, frequency, period, and wavelength? b) What is the direction of wave travel, and what is the speed? c) What is the displacement of a particle at x = 5.00 m, at t = 1.00 min? Hint: pay attention to units!

  • Problem 5: Reading from a graph This is a snapshot of a harmonic wave y-A cos...

    Problem 5: Reading from a graph This is a snapshot of a harmonic wave y-A cos [2π (x-T)| taken at a time t -3s. A COS 2T y(m) 2 a) What is the amplitude A, wavelength A, period T (if there are more options, pick the biggest value) and the di- rection of the propagation of X(m) 4 the wave b) What is the speed of the prop- agation of the wave given λ and l from previous question! 2

  • The equation of a particular wave travelling along a wire is given as y=(0.47m)sin[(150s−1)t+(53m−1)x]y=(0.47m)sin⁡[(150s−1)t+(53m−1)x] Based on...

    The equation of a particular wave travelling along a wire is given as y=(0.47m)sin[(150s−1)t+(53m−1)x]y=(0.47m)sin⁡[(150s−1)t+(53m−1)x] Based on this equation, find the amplitude, wavelength, frequency, and velocity of the wave. Be sure to include the correct sign for the velocity. Amplitude = m Wavelength = m Frequency = Hz Velocity = m/s What is the displacement of the wire at x=0.29x=0.29 m and t=0.26t=0.26 s? Displacement = m I got the first three right but can't figure out how to get the...

  • The transverse displacement of an harmonic wave on a stretched rope is y = 0.05 cos(2.9...

    The transverse displacement of an harmonic wave on a stretched rope is y = 0.05 cos(2.9 x - 5.8 t), where x and y are in meters and t is in seconds. 1) What is the amplitude of this wave? A = m 2) What is the wavelength of this wave? l = m 3) What is the speed with which this wave travels? |v| = m/s 4) In what direction is this wave propagating? +x -x +y -y +z...

  • 11.9 A sinusoidal wave is described by the wave function, y# (0.27 m) sin(0.22x-34t) where x...

    11.9 A sinusoidal wave is described by the wave function, y# (0.27 m) sin(0.22x-34t) where x and y are in meters and t is in seconds. Determine the following for this wave (a) the amplitude (b) the angular frequency rad/s (c) the angular wave number rad/m (d) the wavelength 25.56 What is the relationship between the wave number and the wavelength? m e) the wave speed The speed can be calculated from a number of quantities that involve the length...

  • 4) The given wave is traveling in a rope to the right. t = 1 second...

    4) The given wave is traveling in a rope to the right. t = 1 second de 18 m The wave Y= 1.5 sin(kx-wt) travels in the rope. *(1.5 is in cm) a) What is the amplitude of the wave? b) What is the frequency (f) (-in Hertz) of the wave ? ( see the above figure) How did you calculate it c) What is the period (T) (-in seconds) of the wave? (see the above figure). How did you...

  • The equation of a transverse wave traveling on a string is given by y = A...

    The equation of a transverse wave traveling on a string is given by y = A sin(kx - ωt) . Data: A=11 mm, k=35 rad/m, ω= 500 rad/s. 1) What is the amplitude? 2) What is the frequency? 3) What is the wave velocity? 4) What is the wavelength? 5) For the same wave, find the maximum transverse speed of a particle in the string.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT