Question

Air contained in a piston-cylinder undergoes two processes in series. In the first the air expands...

Air contained in a piston-cylinder undergoes two processes in series. In the first the air expands according top V = C from 300 kPa and a specific volume of 0.021 m 3 /kg to a pressure of 140 kPa. The second process is a constant pressure compression until specific volume 3 equals specific volume 1. Sketch the processes on a p- V diagram and determine the work per unit mass.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Air contained in a piston-cylinder undergoes two processes in series. In the first the air expands...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • One kg of air in a piston-cylinder assembly undergoes two processes in series from an initial...

    One kg of air in a piston-cylinder assembly undergoes two processes in series from an initial state where p1 = 0.5 MPa, T1 = 227oC. Process 1-2: Constant-temperature expansion until the volume is twice the initial volume. Process 2-3: Constant-volume heating until the pressure is again 0.5 MPa. Sketch the two processes in series on a p-v diagram. Assuming ideal gas behavior, determine (a) the pressure at state 2, in MPa, (b) the temperature at state 3, in oC, and...

  • PROBLEM-3 (30%) One kg of air in a piston-cylinder assembly undergoes two processes in series from...

    PROBLEM-3 (30%) One kg of air in a piston-cylinder assembly undergoes two processes in series from an initial state where P1 = 0.5 MPa, T1 = 227°C: Process 1-2: Constant-temperature expansion until the volume is twice the initial volume. Process 2–3: Constant-volume heating until the pressure is again 0.5 MPa. Sketch the two processes in series on a P-v diagram. Assuming ideal gas behavior, determine: (a) the pressure at state 2, (in MPa) (b) the temperature at state 3, (in...

  • 3.93 w Air contained in a piston-cylinder assembly undergoes two processes in series, as shown in...

    3.93 w Air contained in a piston-cylinder assembly undergoes two processes in series, as shown in Fig. P3:93. Assuming ideal gas behavior for the air, determine the work and heat transfer for the overall process, each in kJ/kg. Isothermal process Ti = 300 K (bar) 1 °C 0.1 0.2 0.3 0.4 V (m) 0.5 0.6 FIGURE P3.93

  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • Air is contained in a vertical piston-cylinder assembly such that the piston is in static...

    Air is contained in a vertical piston-cylinder assembly such that the piston is in static equilibrium The atmosphere exerts a pressure of 101 kPa on top of the 0.8 meter-diameter piston. The gage pressure of the air inside the cylinder is 1.2 kPa. Subsequently, a weight is placed on top of the piston, as shown below, causing the piston to descend until reaching a new static equilibrium position. At this position, the gage pressure of the air inside the cylinder is...

  • Air undergoes two processes in series:

    PROBLEM 1Air undergoes two processes in series:Process 1-2: Polytropic compression, with n = 1.3, from p1 = 110 kPa, V1 = 0.5 m3 to  V2 = .1 m3Process 2-3: Constant pressure process to V3 = V1Determine the work done in each process and comment on the direction of work. Then, determine the net work from Process 1 - 3. (You may assume air to behave as ideal gas throughout process)PROBLEM 2 Air is compressed isothermally in a piston cylinder. If the initial...

  • A piston-cylinder assembly contains air modeled as an ideal gas. The air undergoes a power cycle...

    A piston-cylinder assembly contains air modeled as an ideal gas. The air undergoes a power cycle consisting of four processes in series: • Process 1-2: Constant-temperature expansion at 600 K from p1 = 0.5 MPa to p2 = 0.4 MPa. • Process 2-3: Polytropic expansion with n = 1.3 to p3 = 0.3 MPa. • Process 3-4: Constant-pressure compression to ν4 = ν1. • Process 4-1: Constant-volume heating. a) Sketch the cycle on a p-ν diagram. b) Calculate the work...

  • Air in a piston-cylinder assembly undergoes a polytropic expansion in which the pressure – specific volume...

    Air in a piston-cylinder assembly undergoes a polytropic expansion in which the pressure – specific volume relation is p. V..2=constant. The initial volume is 0.5 m², the initial temperature is 500 K and initial pressure is 600 kPa. The final pressure is 300 kPa. Determine (a) the mass of air, in kg (b) the boundary work, in kJ (c) the final temperature in K and (d) the heat transfer, in kJ.

  • One kg of air is in a piston-cylinder assembly. Air is modeled as an ideal gas...

    One kg of air is in a piston-cylinder assembly. Air is modeled as an ideal gas with a constant specific heat ratio, k = 1.4. The air undergoes a power cycle consisting of four processes in series: Process 1-2: Constant-temperature expansion at 600 K from P, = 0.5 MPa to P2 = 0.4 MPa Process 2-3: Polytropic expansion with n=k to P; - 0.3 MPa Process 3-4: Constant-pressure compression to V4-V Process 4-1: Constant-volume heating. (a) Sketch the cycle on...

  • Air is trapped in a piston cylinder arrangement. The air expands from a temperature of 60...

    Air is trapped in a piston cylinder arrangement. The air expands from a temperature of 60 C and a pressure of 280 KPa to a pressure of 140 KPa. During the process, 30 KJ/Kg of work is done and 14 KJ/Kg of heat is removed. The initial volume is 0.00878 m^3. a) What is the mass of the air? b) What is the temperature change during this process? c) What is the entropy change during this process? d) Does the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT