Question

Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10...

Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10 kg/s and exits at 275 K. A separate stream of liquid water enters at 20°C, 5 bar. Each stream experiences no significant change in pressure. Stray heat transfer with the surroundings of the heat exchanger and kinetic and potential energy effects can be ignored. The specific heat of the oil is constant, c = 2 kJ/kg · K.


If the designer wants to ensure no water vapor is present in the exiting water stream, what is the minimum mass flow rate for the water, in kg/s?

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Thank you...

Upvote if this is helpful.

Have a great day!!

Add a comment
Know the answer?
Add Answer to:
Oil enters a counterflow heat exchanger at 600 K with a mass flow rate of 10...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Figure P4.96 provides steady-state data for a throttling valve in series with a heat exchanger

    4.96 Figure P4.96 provides steady-state data for a throttling valve in series with a heat exchanger. Saturated liquid Refrigerant 134a enters the valve at a pressure of 9 bar and is throttled to a pressure of 2 bar. The refrigerant then enters the heat exchanger, exiting at a temperature of 10℃ with no significant decrease in pressure. In a separate stream, liquid water at 1 bar enters the heat exchanger at a temperature of 25℃ with a mass flow rate of...

  • The figure below provides steady-state data for a throttling valve in series with a heat exchanger.

    The figure below provides steady-state data for a throttling valve in series with a heat exchanger. Saturated liquid Refrigerant 134a enters the valve at a pressure of 9 bar and is throttled to a pressure of p2 2 bar. The refrigerant then enters the heat exchanger, exiting at a temperature of 10°C with no significant decrease in pressure. In a separate stream, liquid water at 1 bar enters the heat exchanger at a temperature of 25°C with a mass flow...

  • Figure provides steady-state data for a throttling valve in series with a heat exchanger. Saturated liquid...

    Figure provides steady-state data for a throttling valve in series with a heat exchanger. Saturated liquid Refrigerant 134a enters the valve at T1 = 36 degrees Celsius with a mass flow rate of 0.26 kg/s and is throttled to T2 = -8 degrees Celsius. The refrigerant then enters the heat exchanger, exiting as saturated vapor with no significant decrease in pressure. In a separate stream, liquid water enters the heat exchanger at T4 = 20 degrees Celsius and exits as...

  • Thermodynamics: Valve and Heat Exchange 4.95

    Figure P4.95 provides steady-state data for a throttling valve in series with a heat exchanger. Saturated liquid Refrigerant134a enters the valve atT1=36 degrees C with a mass flow rate of 0.26 kg/s and is throttled to T2 = -8degrees C. The refrigerant then enters the heat exchanger, exiting as saturated vapor with no significant decrease in pressure. In a separate stream, liquid water enters the heat exchanger at T4 = 20 degrees C and exits as a liquid atT5= 10...

  • Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality...

    Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality of 0.9 and exits at the same pressure as saturated liquid. The steam mass flow rate is 1.3 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30oC and exits at 60oC. The ideal gas model with cp = 1.005 kJ/kg·K can be assumed for air. Kinetic and potential energy effects are negligible. Determine the temperature of...

  • Problem 3 Steam enters a heat exchanger at 0.1 bar with a quality of 0.95 and...

    Problem 3 Steam enters a heat exchanger at 0.1 bar with a quality of 0.95 and condensate exits at 0.1 bar and 45'C. Cooling water enters the heat exchanger in a separate stream as a liquid at 20'C and exits as a liquid at 35 C with no changes in pressure. Heat transfer from the outside of the heat exchanger and changes in the kinetic and potential energies of the flowing streams can be ignored. For steady state operation, (a)...

  • A gas mixture at 1500 K with the molar analysis 10% C02, 20% H2O, 70% N2...

    A gas mixture at 1500 K with the molar analysis 10% C02, 20% H2O, 70% N2 enters a waste-heat boiler operating at steady state, and exits the boiler at 750 K. A separate stream of saturated liquid water enters at 25 bar and exits as saturated vapor with a negligible pressure drop. Ignoring stray heat transfer and kinetic and potential energy changes, determine the mass flow rate of the exiting saturated vapor, in kg per kmol of gas mixture

  • 1. (100 points) A counterflow heat exchanger operates at steady state to transfer heat between air...

    1. (100 points) A counterflow heat exchanger operates at steady state to transfer heat between air and refrigerant 134a. The air enters at 22°C and 0.1 MPa, then exits at 7°C. The R-134a enters at 0°C at a rate of 30 kg/h by mass, and is a saturated vapor upon exit. Both streams experience no notable change in pressure. (a) Determine the heat transfer rate and associated rate of exergy transfer for the R-134a stream in kJ/h. (b) Evaluate the...

  • 12.54 Air at 12°C, 1 atm, and 40% relative humidity enters a heat exchanger with a...

    12.54 Air at 12°C, 1 atm, and 40% relative humidity enters a heat exchanger with a volumetric flow rate of 1 m'/s. A separate stream of dry air enters at 280°C, 1 atm with a mass flow rate of 0.875 kg/s and exits at 220°C. Neglecting heat transfer between the heat exchanger and its surroundings, pressure drops of ach stream, and kinetic and potential energy effects, determine (a) the temperature of the exiting moist air, in °C

  • Problem 4.067 SI The figure below provides steady-state data for a throttling valve in series with...

    Problem 4.067 SI The figure below provides steady-state data for a throttling valve in series with a heat exchanger. Saturated liquid Refrigerant 134a enters the valve at a pressure of 9 bar and is throttled to a pressure of P = 2 bar. The refrigerant then enters the heat exchanger, exiting at a temperature of 10°C with no significant decrease in pressure. In a separate stream, liquid water at 1 bar enters the heat exchanger at a temperature of 25°C...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT