Question

Exercise 4.5.3. Let G-(g g 1 be a group of order 2 and V a CG-module of Let u +202 +2,u2 2v1 - 2 +2vs,u vector space spanned

0 0
Add a comment Improve this question Transcribed image text
Answer #1

i) To show that U_i is \mathbb CG-submodule of V, we merely need to show that gu_i=\lambda_iu_i for some \lambda_i\in\mathbb C .

Now, consider u_1=v_1+2v_2+2v_3 ; then

\begin{align*}gu_1&=g(v_1+2v_2+2v_3)\\ &=gv_1+2gv_2+2gv_3\\ &=(-9v_1+4v_2-8v_3)+2(-4v_1+v_2-4v_3)+2(8v_1-4v_2+7v_3)\\ &=-v_1-2v_2-2v_3\\ &=-u_1\end{align*}

Similarly,

\begin{align*}gu_2&=g(2v_1-v_2+2v_3)\\ &=2gv_1-gv_2+2gv_3\\ &=2(-9v_1+4v_2-8v_3)-(-4v_1+v_2-4v_3)+2(8v_1-4v_2+7v_3)\\ &=2v_1-v_2+2v_3\\ &=u_2\end{align*}

and

\begin{align*}gu_3&=g(2v_1-2v_2+v_3)\\ &=2gv_1-2gv_2+gv_3\\ &=2(-9v_1+4v_2-8v_3)-2(-4v_1+v_2-4v_3)+(8v_1-4v_2+7v_3)\\ &=-2v_1+2v_2-v_3\\ &=-u_3\end{align*}

Thus, U_i is \mathbb CG-submodule of V for \begin{align*}i=1,2,3\end{align*} .

To show that \begin{align*}V=U_1\oplus U_2\oplus U_3\end{align*} it suffices to show that the vectors \begin{align*}u_1,u_2,u_3\end{align*} are linearly independent. Consider the linear transform \begin{align*}T:V\rightarrow V\end{align*} , given by \begin{align*}T(v_i)=u_i\end{align*} for \begin{align*}i=1,2,3\end{align*} . With respect to the basis \begin{align*}\{v_1,v_2,v_3\}\end{align*} its matrix is

\begin{align*}T=\begin{pmatrix}1&2&2\\ 2&-1&-2\\ 2&2&1 \end{pmatrix}\end{align*}

Is determinant is

\begin{align*}\det T&=\begin{pmatrix}-1&-2\\ 2&1 \end{pmatrix}-2\begin{pmatrix}2&-2\\ 2&1 \end{pmatrix}+2\begin{pmatrix}2&-1\\ 2&2\end{pmatrix}\\ &=3-12+12\\ &=3\end{align*}

Thus, \begin{align*}T:V\rightarrow V\end{align*} is invertible, therefore, it maps the basis \begin{align*}\{v_1,v_2,v_3\}\end{align*} to a basis, which is \begin{align*}\{u_1,u_2,u_3\}\end{align*} by construction.

ii) Again, \begin{align*}\lambda\end{align*} needs to be such that \begin{align*}gu=\lambda_uu\end{align*} for some \begin{align*}\lambda_u\in\mathbb C\end{align*} .

Now,

\begin{align*}gu&=gv_1+gv_2+\lambda gv_3\\ &=(-9v_1+4v_2-8v_3)+(-4v_1+v_2-4v_3)+\lambda(8v_1-4v_2+7v_3)\\ &=(-9-4+8\lambda)v_1+(4+1-4\lambda)v_2+(-8-4+7\lambda)v_3\\ &=(-13+8\lambda)v_1+(5-4\lambda)v_2+(-12+7\lambda)v_3\end{align*}

Thus, for \begin{align*}gu=\lambda_uu\end{align*} to hold  for some \begin{align*}\lambda_u\in\mathbb C\end{align*} we need

\begin{align*}(-13+8\lambda)v_1+(5-4\lambda)v_2+(-12+7\lambda)v_3&=\lambda_uv_1+\lambda_uv_2+\lambda_u\lambda v_3\end{align*}

This implies, in particular

\begin{align*}-13+8\lambda=5-4\lambda\\ \Rightarrow\hspace{3cm}12\lambda&=18\\ \Rightarrow\hspace{3.4cm}\lambda&=1.5\end{align*}

Finally, we check that for this value we do have consistency in

\begin{align*}(-13+8\lambda)v_1+(5-4\lambda)v_2+(-12+7\lambda)v_3&=\lambda_uv_1+\lambda_uv_2+\lambda_u\lambda v_3\end{align*}

as the left side is

\begin{align*}(-13+8\lambda)v_1+(5-4\lambda)v_2+(-12+7\lambda)v_3&=-v_1-v_2-1.5v_3\end{align*}

and the right side is

\begin{align*}\lambda_uv_1+\lambda_uv_2+\lambda_u\lambda v_3&=-v_1-v_2-1.5v_3\end{align*}

Thus, we need \begin{align*}\lambda=1.5\end{align*} .

For the last part, note that all the \mathbb CG-submodules \begin{align*}U, U_i\end{align*} , where \begin{align*}i=1,2,3\end{align*} are one-dimensional (vector) subspaces. Since \begin{align*}gu=-u\end{align*} , and \begin{align*}gu_i=-u_i\end{align*} for \begin{align*}i=1,3\end{align*} , we find that \begin{align*}U_i \cong U\end{align*} for \begin{align*}i=1,3\end{align*} . On the other hand, since \begin{align*}gu=-u\end{align*} , and \begin{align*}gu_2=u_2\end{align*} , we know that \begin{align*}U_2 \not\cong U\end{align*} .

Add a comment
Know the answer?
Add Answer to:
Exercise 4.5.3. Let G-(g g 1 be a group of order 2 and V a CG-module of Let u +202 +2,u2 2v1 - 2 ...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT