Question

3. Find the transfer function E, (s)/E, (s) of the circuit below using impedance methods Find expressions for the natural fre

I need help with this Dynamics II electrical system analysis.
Please provide detailed explanation and show work.

Thank you.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

The given circuit can be redrawn in the Laplace domain as follows.

12. Sl SC

Let Z_1 be the impedance of the parallel combination of the inductor and series RC branch and E_1 be the voltage across it.

Z_1=\frac{sL\times(R_2+\frac{1}{sC})}{sL+(R_2+\frac{1}{sC})}=\frac{s^2R_2CL+sL}{s^2LC+sR_2C+1}

Now the total impedance of the circuit as referred to the source is

Z_{eq}=R_1+Z_1=R_1+\frac{s^2R_2CL+sL}{s^2LC+sR_2C+1}=\frac{R_1(s^2LC+sR_2C+1)+s^2R_2CL+sL}{s^2LC+sR_2C+1}

\Rightarrow Z_{eq}=\frac{s^2LC(R_1+R_2)+s(L+R_1R_2C)+R_1}{s^2LC+sR_2C+1}

According to the voltage division principle, the voltage across the impedance Z_1 is g iven by

E_1(s)=\frac{Z_1}{Z_{eq}}E_i(s)=\frac{\frac{s^2R_2CL+sL}{s^2LC+sR_2C+1}}{\frac{s^2LC(R_1+R_2)+s(L+R_1R_2C)+R_1}{s^2LC+sR_2C+1}}E_i(s)=\frac{s^2R_2CL+sL}{s^2LC(R_1+R_2)+s(L+R_1R_2C)+R_1}E_i(s) ...............Eq.1

Now the output voltage E_o according the voltage principle si given by

E_o=\frac{\frac{1}{Cs}}{R_2+\frac{1}{Cs}}E_1(s)=\frac{1}{1+sCR_2}E_1(s) ........Eq.2

From Eq.1 and Eq.2

E_o=\frac{1}{1+sCR_2}\cdot\frac{s^2R_2CL+sL}{s^2LC(R_1+R_2)+s(L+R_1R_2C)+R_1}E_i(s)

\Rightarrow E_o=\frac{1}{1+sCR_2}\cdot\frac{sL(sR_2C+1)}{s^2LC(R_1+R_2)+s(L+R_1R_2C)+R_1}E_i(s)

\Rightarrow E_o=\frac{sL}{s^2LC(R_1+R_2)+s(L+R_1R_2C)+R_1}E_i(s)

From the above equation, the transfer function \frac{E_o(s)}{E_i(s)} is given by

\frac{E_o(s)}{E_i(s)}=\frac{sL}{s^2LC(R_1+R_2)+s(L+R_1R_2C)+R_1} ...........Eq.3

The above equation can be rearranged as

\frac{E_o(s)}{E_i(s)}=\frac{sL}{LC(R_1+R_2)\left(s^2+s\frac{(L+R_1R_2C)}{LC(R_1+R_2)}+\frac{R_1}{LC(R_1+R_2)}\right)}

\frac{E_o(s)}{E_i(s)}=\frac{s\frac{1}{C(R_1+R_2)}}{\left(s^2+s\frac{(L+R_1R_2C)}{LC(R_1+R_2)}+\frac{R_1}{LC(R_1+R_2)}\right)} .............Eq.4

From the above equation, the characteristic equation is

s^2+s\frac{(L+R_1R_2C)}{LC(R_1+R_2)}+\frac{R_1}{LC(R_1+R_2)}=0 ...........Eq.5

Comparing Eq.5 with the standard characteristic equation of a second order system s^2+2\zeta\omega_ns+\omega_n^2=0 we have

\omega_n=\sqrt{\frac{R_1}{LC(R_1+R_2)}}

2\zeta\omega_n=\frac{L+R_1R_2C}{LC(R_1+R_2)}

\Rightarrow \zeta=\frac{1}{2\omega_n}\frac{L+R_1R_2C}{LC(R_1+R_2)}

\Rightarrow \zeta=\frac{1}{2\sqrt{\frac{R_1}{LC(R_1+R_2)}}}\frac{L+R_1R_2C}{LC(R_1+R_2)}=\frac{L+R_1R_2C}{2\sqrt{R_1LC(R_1+R_2)}}

So, the expressions for the natural frequency and the damping ratio are

\omega_n=\sqrt{\frac{R_1}{LC(R_1+R_2)}}

\zeta=\frac{L+R_1R_2C}{2\sqrt{R_1LC(R_1+R_2)}}

Given the values of the circuit elements are

\\L=0.2H \\C=2mF \\R_1=10\Omega \\R_2=20\Omega

Substituting the above values in Eq.3

\frac{E_o(s)}{E_i(s)}=\frac{s(0.2)}{s^2(0.2)(0.002)(10+20)+s(0.2+(10)(20)(0.002))+10}

\frac{E_o(s)}{E_i(s)}=\frac{0.2s}{0.012s^2+0.6s+10}

The output voltage to a step response in the Laplace domain can be given as

E_o(s)=\frac{0.2s}{0.012s^2+0.6s+10}\cdot\frac{1}{s}

According to Initial value theorem, the initial value is given

e_o(t=0)=\lim_{s\rightarrow\infty}sE(s)=\lim_{s\rightarrow\infty}s\frac{0.2s}{0.012s^2+0.6s+10}\cdot\frac{1}{s}

e_o(t=0)=\lim_{s\rightarrow\infty}\frac{0.2s}{0.012s^2+0.6s+10}=0

According to the final value theorem, the final value is given by

e_o(t=\infty)=\lim_{s\rightarrow0}sE(s)=\lim_{s\rightarrow0}s\frac{0.2s}{0.012s^2+0.6s+10}\cdot\frac{1}{s}

e_o(t=\infty)=\lim_{s\rightarrow0}\frac{0.2s}{0.012s^2+0.6s+10}=0

The MATLAB code to find the natural frequency and the damping ratio and to plot the step response is given below.

%values of elements
R1=10;
R2=20;
L=0.2;
C=0.002;
%coefficients of numerator
num=[L,0];
%coefficients of numerator
den=[L*C*(R1+R2), L+R1*R2*C R1];
%transfer function
sys1=tf(num,den);
%obtaining the damping ratio and the natural frequency
[wn,zeta]=damp(sys1);
%displaying the above results on command window
fprintf('Natural Frequency\t:%1.4f\n',wn(1))
fprintf('Damping Ratio\t\t:%1.4f\n',zeta(1))
%plotting the step response
step(sys1)

The Output on the command window is

Natural Frequency   :28.8675
Damping Ratio       :0.8660

The step response plot is

Step Response 0.25 0.2 0.15 0.1 0.05 0.05 0.05 0.15 0.2 0.25 0.3 Time (seconds)

We got zero as the initial and final value of the system from the step response plot. The same is verified from the initial and final value theorems.

Add a comment
Know the answer?
Add Answer to:
I need help with this Dynamics II electrical system analysis. Please provide detailed explanation...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT