Question

1. A solid sphere with mass M- 10 kgand radius R 20 cmexperiences a tangential force F-200 N at its surface. Find the angular

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Torque on the body = moment of inertia × angular acceleration

Force × radius = 2/5 mr² × angular acceleration

200 × 0.2 = 2/5 ×10 × 0.2² angular acceleration

40 = 0.16 × angular acceleration

Angular acceleration = 40/0.16 = 250 rad/s²

Add a comment
Know the answer?
Add Answer to:
1. A solid sphere with mass M- 10 kgand radius R 20 cmexperiences a tangential force F-200 N at i...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 4. A solid sphere of mass m and radius r rolls without slipping along the...

    Problem 4. A solid sphere of mass m and radius r rolls without slipping along the track shown below. It starts from rest with the lowest point of the sphere at height h 3R above the bottom of the loop of radius R, much larger than r. Point P is on the track and it is R above the bottom of the loop. The moment of inertia of the ball about an axis through its center is I-2/S mr. The...

  • Problem 4. A solid sphere of mass m and radius rrolls without slipping along the track...

    Problem 4. A solid sphere of mass m and radius rrolls without slipping along the track shown below. It starts from rest with the lowest point of the sphere at height 3R above the bottom of the loop of radius R, much larger than r. Point P is on the track and it is R above the bottom of the loop. The moment of inertia of the ball about an axis through its center is I-2/5 mr. The ball should...

  • Problem 4 A uniform solid spherical ball of mass M and radius R rests on a horizontal surface. Assume a constant coeffi...

    Problem 4 A uniform solid spherical ball of mass M and radius R rests on a horizontal surface. Assume a constant coefficient of friction (this means that the frictional force is equal to the normal force multiplied by u). The acceleration due to gravity is g. At time t 0, the bal is struck impulsively on center, causing it to go instantaneously from rest to initial rotation horizontal speed vo with a no (a) Find the horizontal speed, and the...

  • Consider a solid sphere of mass m and radius r being released from a height h...

    Consider a solid sphere of mass m and radius r being released from a height h (i.e., its center of mass is initially a height h above the ground). It rolls without slipping and passes through a vertical loop of radius R. a. Use energy conservation to determine the tangential and angular velocities of the sphere when it reaches the top of the loop. b. Draw a force diagram for the sphere at the top of the loop and write...

  • The sphere of mass M and radius R is rigidly attached to a thin rod of radius r

    The sphere of mass M and radius R is rigidly attached to a thin rod of radius r that passes through the sphere at distance ½R from the center. A string wrapped around the rod pulls with tension T. (Figure 1) Part A Find an expression for the sphere's angular acceleration. The rod's moment of Inertia is negligible

  • Q7 (15 points): A solid cylinder of mass 5 kg and radius R 0.15 m rolls...

    Q7 (15 points): A solid cylinder of mass 5 kg and radius R 0.15 m rolls without slipping on a horizontal surface and is accelerated to the right by a constant force F of magnitude 6 N that is applied at the cylinder by a massless rope as shown in the below figure. Find a) the magnitude of the acceleration of the center of mass of the cylinder, b) the magnitude of the angular acceleration of the cylinder about the...

  • A solid sphere of mass M and radius R starts from rest at the top of...

    A solid sphere of mass M and radius R starts from rest at the top of an inclined ramp, and rolls to the bottom.  The upper end of the ramp is h meters higher than the lower end.  (Note: The moment of inertia for a solid sphere rotating about an axis through its center is (2/5)MR2) Draw an energy bar chart & corresponding equation for this situation Symbolically, what is the linear speed of the sphere at the bottom of the ramp...

  • Find the moment of inertia of a solid sphere (mass M, radius R) around a diameter....

    Find the moment of inertia of a solid sphere (mass M, radius R) around a diameter. Do this by slicing the sphere into disks.

  • Find the moment of inertia of a solid sphere (mass M, radius R) around a diameter....

    Find the moment of inertia of a solid sphere (mass M, radius R) around a diameter. Do this by slicing the sphere into disks.

  • (11 points) A uniform solid sphere of mass m and radius r is placed inside a...

    (11 points) A uniform solid sphere of mass m and radius r is placed inside a hemispherical bowl of radius R. The sphere is released from rest at an angle theta and rolls without slipping. (a) (6 points) Using Conservation of Energy, to find an expression for the angular speed of the sphere when it reaches the lowest point of the bowl. (b) (6 points) Find the magnitude of the centripetal acceleration of the center of mass of the sphere...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT