Question

A reinforced concrete cantilevered beam with a span of 5 m extends from the wall, as shown in the figure below. The beam has

A reinforced concrete cantilevered beam with a span of 5 m extends from the wall, as shown in the figure below. The beam has a rectangular cross-section and supports a uniform dead load (DL) of 15 kN/m (excluding the self-weight) and a uniform live load (LL) of 25 kN/m. The beam width is restricted to 400 mm. Use 10M stirrups and 25M bars for tension steel. The maximum aggregate size is 20 mm. 1ie 5.5. beam is located in the interior of a building. The con crete and steel material properties are given below a) Find the minimum required beam depth, such that the CSA A23.3 requirements are satisfied, without a detailed deflection calculation b) Design the required tension reinforcement for the beam such that it can carry the design loads Use the beam depth determined in part a) Confirm that the design meets the pertinent CSA A23.3 requirements Provide a design summary Given: f 30 MPa 不= 400 MPa o, 0.65 9,-, 0.85 γ,-24 kN/m 3 c)
1 0
Add a comment Improve this question Transcribed image text
Answer #1

solution heam with a span rein be wen width b40 m (b) h- as-lo-1s/2_.-577.gow ぺS?s mmCop ssie Tension force omin aMome n Loo mm

Add a comment
Know the answer?
Add Answer to:
A reinforced concrete cantilevered beam with a span of 5 m extends from the wall, as shown in the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • simply supported reinforced concrete beam of rectangular section is hung on the left end by a 400mm square post working in tension, as shown in the figure below. The beam supports a uniform dead l...

    simply supported reinforced concrete beam of rectangular section is hung on the left end by a 400mm square post working in tension, as shown in the figure below. The beam supports a uniform dead load (DL) gf 100 KN/m (excluding its own weight) and upiform live load LL) of 40KN/m. The beam is reinforced with 025 longitudinal rebars with 40mm cleat cover to the stirrups. Material properties: fy 420 MPa, fe 25 MPa. Beam dimension b 400mm and h 600mm....

  • A reinforced concrete beam with dimensions (300 mm * 800 mm) subjected to a service dead...

    A reinforced concrete beam with dimensions (300 mm * 800 mm) subjected to a service dead load moment (MD=500 kN.m) and a service live load moment (ML = 400 kN.m). Design the section as a double reinforced section (the dimensions can't be increased). Place the compression reinforcement at 65 mm from the compression face. Compressive strength of concrete; fe 28 MPa, yielding stress of reinforcement; fy= 420 MPa. Assume 30 mm to be used in the tension (two layers), 26...

  • A reinforced concrete beam with dimensions (300 mm * 800 mm) subjected to a service dead...

    A reinforced concrete beam with dimensions (300 mm * 800 mm) subjected to a service dead load moment (MD= 500 kN.m) and a service live load moment (ML = 400 kN.m). Design the section as a double reinforced section (the dimensions can't be increased). Place the compression reinforcement at 65 mm from the compression face. Compressive strength of concrete; fc = 28 MPa, yielding stress of reinforcement; fy= 420 MPa. Assume 30 mm to be used in the tension (two...

  • 2. A rectangular beam, 400 x 600 mm gross dimension, is cast using a concrete strength...

    2. A rectangular beam, 400 x 600 mm gross dimension, is cast using a concrete strength of fc 30 MPa, reinforced with 5-25 mm diameter steel bar at the effective depth of 500 mm. If is subjected to a moment, M 130 kN-m. Determine the following: Magnitude of the bending moment that cracks the singly-reinforced beam section. (10 pts) b. For the computed cracking moment, determine the maximum compressive stress in the concrete and the stress in the tension steel....

  • A simply supported reinforced concrete beam of 8 m span is subjected to uniformly distributed load...

    A simply supported reinforced concrete beam of 8 m span is subjected to uniformly distributed load as shown in Figure 3. The following data are given: The ultimate load, wu is 60 kN/m; characteristic strength of concrete, fck is 30 N/mm²; characteristic strength of reinforcement, fyk is 500 N/mm2. The effective depth, d is 650 mm. Take the link diameter, w as 10 mm, main bar diameter, o as 20 mm and concrete cover as 30 mm. Design the shear...

  • A reinforced concrete beam has the following properties: Beam width, b = 320 mm Effective depth,...

    A reinforced concrete beam has the following properties: Beam width, b = 320 mm Effective depth, d = 640 mm Concrete strength, f’c = 21 MPa Reinforcing steel strength, fy = 400 MPa If the factored shear force at the critical section is 210,000 N, compute the nominal shear carried by the shear reinforcement. EXERCISE - USD SHEAR 1. A reinforced concrete beam has the following properties: Beam width, b = 320 mm Effective depth, d = 640 mm Concrete...

  • Task 1: (50 Marks) Cross section of a reinforced concrete beam is shown in Figure 1....

    Task 1: (50 Marks) Cross section of a reinforced concrete beam is shown in Figure 1. The following shear forces have been calculated due to Dead Load and Live Load at the support: VDL = 150 kN, ViL = 200 kN. Design the shear reinforcement for the ultimate shear force. Use No. 10 bars for shear reinforcement Assume "fe, = 28 MPa, fyt-420 MPa, b = 300 mm, d = 750 mm, h = 800 mm Figure 1. Beam cross-section

  • The reinforced concrete beam shown in Figure-2 is to be subjected to the following uniformly distributed...

    The reinforced concrete beam shown in Figure-2 is to be subjected to the following uniformly distributed loads over the entire length: DL = 14 kn/m (including self-weight) and LL = 20kN/m, fc = 32 MPa. For architectural reasons the beam width is set at 500 mm. Determine the effective depth required if ku = 0.25 for the section of maximum positive bending moment. Then design the reinforcement required. zin Figure-2

  • A reinforced concrete beam shown in Figure below is 15-in. wide and has effective depth of31 in. ...

    A reinforced concrete beam shown in Figure below is 15-in. wide and has effective depth of31 in. The factored loads are shown. (The factored uniform load includes the weight of the beam). Design the web reinforcement using the Vu diagram shown in the Figure (for a symmetric half). Assume No. 3 stirrups,fc '-4000 psi and fy=fyt-60000psi. 100 kip 100 kip d-31 in. 15 ft clear span As s) 102.5 kip se 2.5 ki @y、阪、もw cl.* 3..-K: ps A reinforced concrete...

  • all parts A simply supported concrete beam is to be designed to span 8m. The beam...

    all parts A simply supported concrete beam is to be designed to span 8m. The beam is required to resist a dead load of 40 kN/m (which includes an allowance for self-weight) and an imposed load of 20 kN/m Calculate the ultimate design load that the beam will be required to resist and hence calculate the ultimate design moment. (10 Marks] b) Choose an appropriate depth and width of the beam. [5 marks] c) Calculate an appropriate amount of reinforcing...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT