Question

The reinforced concrete beam shown in Figure-2 is to be subjected to the following uniformly distributed loads over the entir

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Hope this answer will help you.

Given data Dead load bam DL: (4 n/m (including selt live load t beam LL 20knlm f32 Mpa widfe blam SoomM Ku 2 O. 25 distribebRA-125.32 KN iven The marimum bending momen t is - 145. 32 ニ0 34×1-5Xスニ 1A5.32- 34x15 3.43 SI N3.43) M 2 -h ZE5ti 301. 3 42 CReintaca aeuired O.&XOX AS (d -o.42 u) 3013 42 x (0 301.342x10 o.87X COOx ASt (Soo-o 0.42 K120.8&1 AsK =4-921 lbavs egis2d gi

Thank you!!!!!!!

Add a comment
Know the answer?
Add Answer to:
The reinforced concrete beam shown in Figure-2 is to be subjected to the following uniformly distributed...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A reinforced concrete cantilevered beam with a span of 5 m extends from the wall, as shown in the...

    A reinforced concrete cantilevered beam with a span of 5 m extends from the wall, as shown in the figure below. The beam has a rectangular cross-section and supports a uniform dead load (DL) of 15 kN/m (excluding the self-weight) and a uniform live load (LL) of 25 kN/m. The beam width is restricted to 400 mm. Use 10M stirrups and 25M bars for tension steel. The maximum aggregate size is 20 mm. 1ie 5.5. beam is located in the...

  • 2. A rectangular beam, 400 x 600 mm gross dimension, is cast using a concrete strength...

    2. A rectangular beam, 400 x 600 mm gross dimension, is cast using a concrete strength of fc 30 MPa, reinforced with 5-25 mm diameter steel bar at the effective depth of 500 mm. If is subjected to a moment, M 130 kN-m. Determine the following: Magnitude of the bending moment that cracks the singly-reinforced beam section. (10 pts) b. For the computed cracking moment, determine the maximum compressive stress in the concrete and the stress in the tension steel....

  • A simply supported reinforced concrete beam of 8 m span is subjected to uniformly distributed load...

    A simply supported reinforced concrete beam of 8 m span is subjected to uniformly distributed load as shown in Figure 3. The following data are given: The ultimate load, wu is 60 kN/m; characteristic strength of concrete, fck is 30 N/mm²; characteristic strength of reinforcement, fyk is 500 N/mm2. The effective depth, d is 650 mm. Take the link diameter, w as 10 mm, main bar diameter, o as 20 mm and concrete cover as 30 mm. Design the shear...

  • simply supported reinforced concrete beam of rectangular section is hung on the left end by a 400mm square post working in tension, as shown in the figure below. The beam supports a uniform dead l...

    simply supported reinforced concrete beam of rectangular section is hung on the left end by a 400mm square post working in tension, as shown in the figure below. The beam supports a uniform dead load (DL) gf 100 KN/m (excluding its own weight) and upiform live load LL) of 40KN/m. The beam is reinforced with 025 longitudinal rebars with 40mm cleat cover to the stirrups. Material properties: fy 420 MPa, fe 25 MPa. Beam dimension b 400mm and h 600mm....

  • Question 2: For the reinforced concrete structural plan shown. It is required to calculate the de...

    Question 2: For the reinforced concrete structural plan shown. It is required to calculate the design working and ultimate loads for the marked beams B1, B2 and B3. Assume that: Live loads; LL-3 kN/m2, Thickness of the slab-0.12 m, flooring cover 1.5 kN/m2 fc 35 MPa, fy 420 MPa. 2.50 B2 2 Question 2: For the reinforced concrete structural plan shown. It is required to calculate the design working and ultimate loads for the marked beams B1, B2 and B3....

  • A reinforced concrete beam with dimensions (300 mm * 800 mm) subjected to a service dead...

    A reinforced concrete beam with dimensions (300 mm * 800 mm) subjected to a service dead load moment (MD= 500 kN.m) and a service live load moment (ML = 400 kN.m). Design the section as a double reinforced section (the dimensions can't be increased). Place the compression reinforcement at 65 mm from the compression face. Compressive strength of concrete; fc = 28 MPa, yielding stress of reinforcement; fy= 420 MPa. Assume 30 mm to be used in the tension (two...

  • Problem 1 Reinforced Concrete T-Flanged Sections (50 pts.) You are required to analyze and design...

    Problem 1 Reinforced Concrete T-Flanged Sections (50 pts.) You are required to analyze and design the propped cantilever t-section from HM 4 but for shear only. Draw shear V and moment M diagrams for uniformly distributed load throughout the 30ft span and equally concentrated loads at 10ft and 30ft. Recall that the connection at the left joint N1 is fixed. The connection at 20ft N3 is a roller. The right end node N2 is a free end. Use a concrete...

  • 1. Reinforced Rectangular Concrete Beam The reinforced concrete beam shown is subjected to a bending moment...

    1. Reinforced Rectangular Concrete Beam The reinforced concrete beam shown is subjected to a bending moment of 200 kip ft. Knowing that the modulus of elasticity for the concrete and the steel are respectively Ec= 3.75 X 10 psi and Es = 30 x 10 psi, determine the tensile stress in [ksh] that develops in the steel bars. 20 in 1 in diameter 72.5 in 12 in-

  • A reinforced concrete beam shown in Figure below is 15-in. wide and has effective depth of31 in. ...

    A reinforced concrete beam shown in Figure below is 15-in. wide and has effective depth of31 in. The factored loads are shown. (The factored uniform load includes the weight of the beam). Design the web reinforcement using the Vu diagram shown in the Figure (for a symmetric half). Assume No. 3 stirrups,fc '-4000 psi and fy=fyt-60000psi. 100 kip 100 kip d-31 in. 15 ft clear span As s) 102.5 kip se 2.5 ki @y、阪、もw cl.* 3..-K: ps A reinforced concrete...

  • reinforced concrete design , ACI code Shear Strength of Flexural Members Design for shear forces The...

    reinforced concrete design , ACI code Shear Strength of Flexural Members Design for shear forces The simply supported beam shown is subjected to ultimate (factored) distributed and concentrated loads 1. Determine the shear capacity of concrete at the critical section according to ACI318-14 detailed method in Table 22.5.5.1. Design the shear reinforcement and determine the locations on the beam shear force diagram where this shear reinforcement should be placed. 2. 3. Determine the locations within the beam where minimum shear...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT