Question

3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd = 1 x 1015 cm-, and a cross-
4. Consider the ideal long silicon pn junction shown in FigureT300 K. The n region is doped with 100 donor atoms per cm3 and
3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd = 1 x 1015 cm-, and a cross-sectional area of A-|0-4 cm2. Let tao -0.4 s and tpo 0.1 us. Consider the geometry in Figure.Calculate (a) the ideal reverse saturation current due to holes, (b) the ideal reverse saturation current due to electrons, (c) the hole concentration at a, if V V and (d) the electron current at x = x" + 1 LP for v, = .
4. Consider the ideal long silicon pn junction shown in FigureT300 K. The n region is doped with 100 donor atoms per cm3 and the p region is doped with 5 x 1016 acceptor atoms per cm. The minority carrier lifetimes are τ-o = 0.05 μ s and Tpo 0.01 us. The minority carrier diffusion coefficients are D 23 cm2/s and D, 8 cm2 /s. The forward-bias voltage is V 0.610 V. Calculate (a) the excess hole concentration as a function of x for x 0, (b) the hole diffusion current density at x 1-3 10-4 cm. and (c) the electron current density at x-3 x 10-4 cm.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Vem iS dles s L, . N 1 0 -23 602 Xo-14 .662 X(G -1 22. an 12 χη (2x.otrxiot X0.62. z) .60 2 XIo -.602x b 0.62-o.330, 0.82 x o 2.c cu)

Add a comment
Know the answer?
Add Answer to:
3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd ...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minor...

    Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minority carrier diffusion coefficients are D 25 cm/s, Da- 10 cm2/s n,1.5x1010 cm3 kT 0.0267 Depletion region p-type n-type a) (5 points) Calculate the excess electron concentration as a function of x in the p-side (see the figure above) b) (10 points) Calculate the...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Can someone help solve this question step by step? Thanks! Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p...

  • Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3....

    Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3. The minority carrier lifetimes are τ -0.01 μs and τΡ 0.01 μ. The Junction is forwardbiased with , V,-0.6V. The minority carrier diffusion coefficients are D,-20 cm2/s, D,-10 cm2/s. n, = 1.5x 1010cm -3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • 3. A silicon npn bipolar transistor is uniformly doped and biased in the forward active region wi...

    3. A silicon npn bipolar transistor is uniformly doped and biased in the forward active region with the base-collector junction reverse biased by 2.5 V. The metallurgical base width is 1.5 μm. The emitter, base collector doping concentrations are 5 × 1017, 1016, 2 × 1015 cm-3 respectively. a. At T-300 K, calculate the base-emitter voltage at which the minority carrier electron concentration at x-0 is 20% of the majority carrier hole concentration. At this voltage calculate the minority carrier...

  • Consider a silicon pn junction at T = 300 K, NA-Np - 4x106cm. The minority carrier...

    Consider a silicon pn junction at T = 300 K, NA-Np - 4x106cm. The minority carrier lifetimes are tn = Tp=1 us. The junction is forward biased with V, -0.6V. The minority carrier diffusion coefficients are D = 20 cm²/s, D = 10 cm²/s. n;= 1.5x100cm, kt/e = 0.026V Depletion region n-type p-type a) (5 points) Do we have low-level injection? b) (10 points) Calculate the electron concentration at x = -(Xp + Ln) where L, is the electron diffusion...

  • Q3 Consider a GaAs pn junction with doping concentrations Na5 x 106 cm-3 and N1016 cm-3....

    Q3 Consider a GaAs pn junction with doping concentrations Na5 x 106 cm-3 and N1016 cm-3. The junction cross-sectional area is A 103 cm2 and the applied forward-bias voltage is Va 1.10 V. Calculate the (a) minority electron diffusion cur rent at the edge of the space charge region, (b) minority hole diffusion current at the edge of the space charge region, and (c) total current in the pn junction diode.

  • P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x...

    P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x 107 cm3 and N 1 x 105 cm. (a) Find the stored minority carriers density in the N-side neutral region (infinitely long comparing with Lp and Ln) when a forward bias of 1 V is applied. (b) Calculate the hole current density in the region of (a) at x, 0. (Assume the average diffusion length of hole is 5 um the average carrier life...

  • P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x...

    P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x 107 cm3 and N 1 x 105 cm. (a) Find the stored minority carriers density in the N-side neutral region (infinitely long comparing with Lp and Ln) when a forward bias of 1 V is applied. (b) Calculate the hole current density in the region of (a) at x, 0. (Assume the average diffusion length of hole is 5 um the average carrier life...

  • Problem 4: An abrupt silicon p-n junction diode has the following characteristics. side n-side N-4x 1016cm N1016cm3 n 1000 cm2/V sec 350 cm2/V sec Area A 102cm2 Calculate the following quantities...

    Problem 4: An abrupt silicon p-n junction diode has the following characteristics. side n-side N-4x 1016cm N1016cm3 n 1000 cm2/V sec 350 cm2/V sec Area A 102cm2 Calculate the following quantities: (a) Reverse saturation hole current component (b) Reverse saturation electron current component. (c) Minority carrier concentrations at the edge of the depletion layer, p(0) and pr(0), for a forward voltage of 0.6 V (d) Electron and hole current for the bias condition of (c). (e) Make a rough sketch...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT