Question

Not all second-order systems are designed to give a standard 2d order response. Consider the power steering for an automobil

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ee SyptemJ W(s 2 ook HCS) ddod 02 8ain d。es not Aave an af.fmkact n open 0ebca anch nctin anyfer dunct 2o0K ookr utt SunmerOlos Putting the valoe (S C15バー 2 5 ー> So oubo+Qbok,瘂.kr 532 Otp 0.2 t the O 6559 下2959-1.97 5

Add a comment
Know the answer?
Add Answer to:
Not all second-order systems are designed to give a standard 2"d order response. Consider the pow...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • please solve this with detailed description 7 Not all second-order systems are designed to give a...

    please solve this with detailed description 7 Not all second-order systems are designed to give a standard 2nd order response. Consider the power steering for an automobile. The feedback system can be modeled as the block diagram shown in the figure below. For a unit step input A(s), find values of K1 and K2 for which the response w() is critically damped and has a steady-state gain of 0.4 unit. Repeat for a damping ratio of 0.7 and a steady-state...

  • Question three The figure below shows a unit step response of a second order system. From...

    Question three The figure below shows a unit step response of a second order system. From the graph of response find: 1- The rise timet, 2- The peak timet, 3- The maximum overshoot Mp 4- The damped natural frequency w 5. The transfer function. Hence find the damping ratio ζ and the natural frequency ah-Find also the transfer function of the system. r 4 02 15 25 35 45 Question Four For the control system shown in the figure below,...

  • A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating wi...

    A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the steady-state error for a unit step input b) Design a PI control to reduce the steady-state error to zero without affecting its transient response c) Evaluate the steady-state error and overshoot for a unit step input to your compensated system A unity feedback system with the forward transfer function G(s) is operating with...

  • 1. Consider the unity feedback system shown in figure 1 with G(S) -2sti a) Determine the...

    1. Consider the unity feedback system shown in figure 1 with G(S) -2sti a) Determine the closed loop transfer function TF(s) γ(s) R(s) What are the poles and zeros of TF1(s)? [2 marks] b) For TF(s), calculate the DC gain, natural frequency and damping ratio. Classify TF1(s) as underdamped overdamped, critically damped or undamped [3 marks] c) Use the initial value theorem and final value theorem to determine the initial value (Mo) and final value (M) of the [2 marks]...

  • Write a MATLAB program that w design a PD compensator assuming second-order approximations as fol...

    Write a MATLAB program that w design a PD compensator assuming second-order approximations as follows. . Allow the user to input the desired percent overshoot, peak time and gain required to meet a steady-state error specification Display the gain-compensated Bode plot . Calculate the required phase margin and bandwidth. . Display the pole, zero, and gain of the PD compensator. Display the compensated Bode plot ·Output the step response of the PD-compensated system to test your second-order approximation. [Implement your...

  • I have no more posting for this month, please solve these for me thanks 1. Given...

    I have no more posting for this month, please solve these for me thanks 1. Given the following unity feedback system where s+z s2 (s + 10) and the controller is a proportional controller Ge = K, do the following: a. If z = 2, find K so that the damped frequency of the oscillation of the transient response is 5 rad/s. b. The system is to be redesigned by changing the values of z and K. If the new...

  • Explain the effect of an increasing damping ratio to the dynamic response of a second a)...

    Explain the effect of an increasing damping ratio to the dynamic response of a second a) order control system. [CO1/PO2/C2] (5 marks) b) Figure Q2(b) show a block diagram of second order unity feedback control system with Proportional-Derivative control action. The system's damping ratio E of 0.5 is required and the steady state error to a unit step input must not exceed 5% C(s) 1 1 R(s) Kp+Kas (s+1) (s+5) Figure Q2(b) Analyze the performance of Proportional control action alone....

  • 6. A second order differential equation d?x/dt+ 5 dx/dt+7x = 7y. State the undamped natural frequ...

    6. A second order differential equation d?x/dt+ 5 dx/dt+7x = 7y. State the undamped natural frequ damping ratio. 7. State the damped natural frequency, damping coefficient and time constant for question 6. 8. Given that the transfer function G is K/s(s+sT). State the type and order of the system 9. It is given that G(s) = K/s (1+sT). This system is operated in a closed-loop with unity feedback. W order and the type of closed-loop system? 10. Given the transfer...

  • Do only parts C and D 1. A second-order system has the following transfer function that...

    Do only parts C and D 1. A second-order system has the following transfer function that describes its response: F(s)- s2 +as + 9 A. For a -3, calculate the following performance specifications of the system: Natural frequency (on) Damping ratio( Estimated rise time and settling time with ±5% change (tr, ts) Estimated overshoot (MP) . B. Label (a) ±5% range of steady state, (b) tr, (c) ts, and (d) MP on the step response curve below (You may also...

  • Unit Step Response .A plant has the response, c(), to a unit step, as shown. 3.5 a. From the grap...

    Unit Step Response .A plant has the response, c(), to a unit step, as shown. 3.5 a. From the graph, estimate 3 3 the system's time constant, 5 % overshoot and DC gain. 2 1.5 c. Using the information, find o.5 b. What is the system's damped natural frequency and damping ratio? the second order transfer function C(s)/R(s). 0.2 0.4 0.6 0.8 1.2 Time (sec) Unit Step Response .A plant has the response, c(), to a unit step, as shown....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT