Question

Consider a coal-fired steam power plant that produces 175 MW of electric power. The power plant o...

Consider a coal-fired steam power plant that produces 175 MW of electric power. The power plant operates on a simple ideal Rankine cycle with turbine inlet conditions of 8 MPa and 560°C and a condenser pressure of 8 kPa. The coal has a heating value (energy released when the coal is burned) of 29,300 kJ/kg and a CO2 emission value of 0.093 kg CO2/MJ. Assuming that 85% of this energy is transferred to heat in the boiler and that the electric generator has an efficiency of 96 percent, determine:
a) the overall plant efficiency. Recall
0 0
Answer #1

Frun sowiakd eadublen, 4 a 8 po 2. s,-SF 6, 90201-1-33119 _ . 12ss 23 2289,34 kr/kg

C2 = Chi-h) _ (ha-ha) = 196.096 leg 2. 196,0 237 : 3千 0.06 196096

Know the answer?
Add Answer to:
Consider a coal-fired steam power plant that produces 175 MW of electric power. The power plant o...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A coal-fired steam power plant produces 175 MW of electric power. The power plant operates on...

    A coal-fired steam power plant produces 175 MW of electric power. The power plant operates on a Rankine cycle with turbine inlet conditions of 7 MPa and 550oC and a condenser pressure of 15 kPa. The turbine efficiency and pump efficiency are both 0.8. The coal has a heating value (energy released when the fuel is burned) of 29,300 kJ/kg. Assuming that 85 percent of this energy is transferred to the steam in the boiler and that the electric generator...

  • 7.4 A coal-fired 930-MW power plant is operating under the following conditions: Coal carbon content C...

    7.4 A coal-fired 930-MW power plant is operating under the following conditions: Coal carbon content C = 80%, coal ash content A = 6%, and heating value LHV = 30 MJ/kg Cooling water temperature difference Atew = 10.5 K Plant electrical efficiency ne is 0.43 and capacity factor CF is 0.82. Boiler efficiency n = 0.92 ESP efficiency nesp = 99% Calculate (a) the plant fuel rate, (b) the hourly and annual CO, emission rates, (c) the specific CO2 emissions...

  • A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler...

    A Rankine Cycle based steam power plant produces 200 MW of power. Steam exits the boiler at 3 MPa and 500° C. The turbine exit is at 40 kPa. Isentropic efficiencies of the turbine and pump are 75% and 70% respectively. Show the cycle on a T-s diagram Calculate the mass flow rate of steam Determine the heat transfer rates in the boiler and condenser in MW Determine the cycle efficiency Determine the mass flow rate of the condenser cooling...

  • Section B – combined cycles Overview: a combined gas – steam power cycle in Sweden provides...

    Section B – combined cycles Overview: a combined gas – steam power cycle in Sweden provides electricity and hot water for heating duties for a small city. The gas turbine drives an electricity generator with an efficiency of 97%. A sub-critical coal fired boiler is used as a heat recovery steam generator, as well as providing additional steam from coal during the winter months. The steam turbine drives an electricity generator with an efficiency of 95%. The plant is located...

  • Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed...

    Consider a steam power plant that operates on the ideal regenerative Rankine cycle with a closed feedwater heater as shown in the figure. The plant maintains the turbine inlet at 3000 kPa and 3508C; and operates the condenser at 20 kPa. Steam is extracted at 1000 kPa to serve the closed feedwater heater, which discharges into the condenser after being throttled to condenser pressure. Calculate the work produced by the turbine, the work consumed by the pump, and the heat...

  • Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...

    Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Assume an isentropic efficiency of 85 percent for both the turbine and the pump. (a) the quality of the steam at the turbine exit (b) the thermal efficiency of the cycle (c) the mass flow rate of the steam.

  • Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the...

    Consider a steam power plant which operates on the simple ideal Rankine cycle (shown in the next page), where the boiler pressure is 3 MPa and the condenser saturation temperature is 50°C. The temperature at the exit of the boiler is 500°C. Water leaves the condenser as a saturated liquid. The mass flow rate through each component is 15 kg/s. Calculate: 1. The power output of the steam power plant 2. The thermal efficiency of the steam power plant Now,...

  • ethanol is 190 g E a 3) A coal-fired power plant is designed to produce 12...

    ethanol is 190 g E a 3) A coal-fired power plant is designed to produce 12 MW of electricity. (This is a small unit that might be used to power a pulp-and-paper mill or other relatively energy intensive factory.) The coal is used to heat steam to a temperature of 560 C. After running through the turbines; the steam has been condensed and the liquid water cooled to 38 °C. (a) Calculate the minimum amount of heat that must be...

  • A typical coal-fired power plant burns 290 metric tons of coal every hour to generate 800...

    A typical coal-fired power plant burns 290 metric tons of coal every hour to generate 800 MW of electricity. 1 metric ton= 1000 kg. The density of coal is 1500 kg/m3 and its heat of combustion is 28 MJ/kg. Assume that all heat is transferred from the fuel to the boiler and that all the work done in spinning the turbine is transformed into electrical energy. Part A)Suppose the coal is piled up in a 8.0 m × 11 m...

  • Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters...

    Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 15 kPa. Determine the mass flow rate of the steam in kg/s.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT