Question
Structural Dynamics
(12 points) For the system shown below, 1. Determine A) The equation of motion. B) The maximum steady state force in the damp
0 0
Add a comment Improve this question Transcribed image text
Answer #1

lt) メ(A) y(363x2 Max-$ 5X 3.2X 2153​​​​​

Add a comment
Know the answer?
Add Answer to:
(12 points) For the system shown below, 1. Determine A) The equation of motion. B) The maximum st...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 7. 150 points) A one-degree-of-freedom system is shown below. (a) (50 points) Derive the differential equation...

    7. 150 points) A one-degree-of-freedom system is shown below. (a) (50 points) Derive the differential equation governing the motion of the system usingq, the (b) (25 points) what are the natural frequency and damping ratto of the system? c) (25 points) Mc)-0 (d) (25 points) (e) (25 points) If M(t) =1.2 sin m N clockwise angular displacement of the disk from equilibrium as the generalized coordinate. 10° and the system is given an initial angulan released from rest what is...

  • . The system shown below consists of a homogeneous rigid rod with mass m, length l,...

    . The system shown below consists of a homogeneous rigid rod with mass m, length l, and mass center of gravity G where the mass moment of inertia of the rod about G is given by: Translational spring with stiffness k supports the rod at point B, and rotational damper c, İs connected to the rod at its pivot point A as shown.ft) is an external force applied to the rod. Derive the equation of motion of the single degree...

  • Question B A machine on a viscoelastic foundation (Figure 31.1), modelled as a spring mass-damper system...

    Question B A machine on a viscoelastic foundation (Figure 31.1), modelled as a spring mass-damper system is acted upon by a force modelled as a harmonic force: F(t) = 0.2 sin(wt) Force is given in N and time in seconds. W Figure 31.1 Nos Given numerical values: m = 10 kg C=5 M k = 1000 = 1) draw the correct Free-Body-Diagram and determine the equation of motion [2 marks) 2) determine the natural frequency and the damping ratio of...

  • OUESTİON 2: (30 points) tp() Write the equation of motion for the SDOF system by taking the displ...

    OUESTİON 2: (30 points) tp() Write the equation of motion for the SDOF system by taking the displacement coordinate to be the vertical displacement Z(t) at B. The system is rigid bar having uniformly distributed mass m 4 m 丯k Two concentrated masses m 2ma are located at B and C. The spring and damper are weightless. Assume that all displacements are small. Determine the natural period of the system. OUESTİON 2: (30 points) tp() Write the equation of motion...

  • solve the following question For the system shown in the figure below x and y denote,...

    solve the following question For the system shown in the figure below x and y denote, respectively, the absolute displacements of the mass m and the end Q of the damper c1 (1) Derive the equation of motion of the mass m (2) Find the steady state displacement of the mass m (3) Find the force transmitted to the support at P when the end Q is subjected to harmonic motion y (t)-y cos wt x(t) y(t) cos ω t

  • F Fosin t m k 2 Figure Qla: System is subjected to a periodic force excitation (a) Derive the equation of motion of the...

    F Fosin t m k 2 Figure Qla: System is subjected to a periodic force excitation (a) Derive the equation of motion of the system (state the concepts you use) (b) Write the characteristic equation of the system [4 marks 12 marks (c) What is the category of differential equations does the characteristic equation [2 marks fall into? (d) Prove that the steady state amplitude of vibration of the system is Xk Fo 25 + 0 marks (e) Prove that...

  • Consider the mechanical dynamics of a 2DOF rotary motion system shown below, where the torque is...

    Consider the mechanical dynamics of a 2DOF rotary motion system shown below, where the torque is applied to the right shaft but the angular position of the left shaft is to be controlled, k is the stiffness of the linear rotary spring and b is the viscous friction coefficient of the ball bearing that supports the right shaft and acts as a linear viscous damper with rotary motion. The left shaft is only supported by the right shaft, so there...

  • Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed...

    Problem 1 (Harmonic Oscillators) A mass-damper-spring system is a simple harmonic oscillator whose dynamics is governed by the equation of motion where m is the mass, c is the damping coefficient of the damper, k is the stiffness of the spring, F is the net force applied on the mass, and x is the displacement of the mass from its equilibrium point. In this problem, we focus on a mass-damper-spring system with m = 1 kg, c-4 kg/s, k-3 N/m,...

  • The equations of motion for a mass-spring-damper system can be described by mE(t) + ci(t) +...

    The equations of motion for a mass-spring-damper system can be described by mE(t) + ci(t) + k2(t) = F(t), where z(t) is the position of the mass, c is the damper coefficient, k is the spring constant, and F(t) is an external force applied to the mass as an input. If the system state vector is defined by 2(t) = lat) a(t)=F(t), y(t)=2(t), given below: x=Ax + Bu y=Cx + Du.

  • 4. Given the mechanical system shown in the following diagram: 6,,02 J, K, No slip-_ F(t) Massles...

    4. Given the mechanical system shown in the following diagram: 6,,02 J, K, No slip-_ F(t) Massless rack a. Draw the FBD for each inertia and for the rack: Develop the basic equations of motion for each of the three mass elements (do it for the rack, even though its inertia is zero). Do not solve for spring and damper b. forces yet: leave answers in terms of jki, ma.,jai,fo, etc. What is the "stretch" in the spring K2 and...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT