Question

If LST is 45o , what is it in hours, minutes, and seconds? Draw a diagram to illustrate this time...

If LST is 45o , what is it in hours, minutes, and seconds? Draw a diagram to illustrate this time.

2. If you current location has rotated 50o past the vernal equinox direction, what is you LST in hours, minutes and seconds?

3. Mission planners want to launch the Space Shuttle from Kennedy Space Center (Lo=28.5o ) into an orbit with an inclination of 28.5o . How many launch windows will there e each day? Draw a diagram to illustrate this case How would this change if the desired inclination were 57o? Draw a diagram to illustrate this case.

0 0
Add a comment Improve this question Transcribed image text
Answer #1
What that value is depends of course on where we begin to count--on where zero longitude is. For historical reasons, the meridian passing the old Royal Astronomical Observatory in Greenwich, England, is the one chosen as zero longitude. Located at the eastern edge of London, the British capital, the observatory is now a public museum and a brass band stretching across its yard marks the "prime meridian." Tourists often get photographed as they straddle it--one foot in the eastern hemisphere of the Earth, the other in the western hemisphere.
  •   A lines of longitude is also called a meridian, derived from the Latin, from meri, a variation of "medius" which denotes "middle", and diem, meaning "day." The word once meant "noon", and times of the day before noon were known as "ante meridian", while times after it were "post meridian." Today's abbreviations a.m. and p.m. come from these terms, and the Sun at noon was said to be "passing meridian". All points on the same line of longitude experienced noon (and any other hour) at the same time and were therefore said to be on the same "meridian line", which became "meridian" for short.

About time--Local and Universal

Two important concepts, related to latitude and (especially) longitude are Local time (LT) and Universal time (UT)

Local time is actually a measure of the position of the Sun relative to a locality. At 12 noon local time the Sun passes to the south and is furthest from the horizon (northern hemisphere). Somewhere around 6 am it rises, and around 6 pm it sets. Local time is what you and I use to regulate our lives locally, our work times, meals and sleep-times.

But suppose we wanted to time an astronomical event--e.g. the time when the 1987 supernova was first detected. For that we need a single agreed-on clock, marking time world-wide, not tied to our locality. That is universal time (UT), which can be defined (with some slight imprecision, no concern here) as the local time in Greenwich, England, at the zero meridian.

Local Time (LT) and Time Zones

Longitudes are measured from zero to 180° east and 180° west (or -180°), and both 180-degree longitudes share the same line, in the middle of the Pacific Ocean.

As the Earth rotates around its axis, at any moment one line of longitude--"the noon meridian"--faces the Sun, and at that moment, it will be noon everywhere on it. After 24 hours the Earth has undergone a full rotation with respect to the Sun, and the same meridian again faces noon. Thus each hour the Earth rotates by 360/24 = 15 degrees.

When at your location the time is 12 noon, 15° to the east the time is 1 p.m., for that is the meridian which faced the Sun an hour ago. On the other hand, 15° to the west the time is 11 a.m., for in an hour's time, that meridian will face the Sun and experience noon.

In the middle of the 19th century, each community across the US defined in this manner its own local time, by which the Sun, on the average, reached the farthest point from the horizon (for that day) at 12 oclock. However, travelers crossing the US by train had to re-adjust their watches at every city, and long distance telegraph operators had to coordinate their times. This confusion led railroad companies to adopt time zones, broad strips (about 15° wide) which observed the same local time, differing by 1 hour from neighboring zones, and the system was adopted by the nation as a whole.

The continental US has 4 main time zones--eastern, central, mountain and western, plus several more for Alaska, the Aleut islands and Hawaii. Canadian provinces east of Maine observe Atlantic time; you may find those zones outlined in your telephone book, on the map giving area codes. Other countries of the world have their own time zones; only Saudi Arabia uses local times, because of religious considerations.

In addition, the clock is generally shifted one hour forward between April and October. This "daylight saving time" allows people to take advantage of earlier sunrises, without shifting their working hours. By rising earlier and retiring sooner, you make better use of the sunlight of the early morning, and you can enjoy sunlight one hour longer in late afternoon.

The Date Line and Universal Time (UT)

Suppose it is noon where you are and you proceed west--and suppose you could travel instantly to wherever you wanted.

Fifteen degrees to the west the time is 11 a.m., 30 degrees to the west, 10 a.m., 45 degrees--9 a.m. and so on. Keeping this up, 180 degrees away one should reach midnight, and still further west, it is the previous day. This way, by the time we have covered 360 degrees and have come back to where we are, the time should be noon again--yesterday noon.

Hey--wait a minute! You cannot travel from today to the same time yesterday!

We got into trouble because longitude determines only the hour of the day--not the date, which is determined separately. To avoid the sort of problem encountered above, the international date line has been established--most of it following the 180th meridian--where by common agreement, whenever we cross it the date advances one day (going west) or goes back one day (going east).

That line passes the Bering Strait between Alaska and Siberia, which thus have different dates, but for most of its course it runs in mid-ocean and does not inconvenience any local time keeping.

Astronomers, astronauts and people dealing with satellite data may need a time schedule which is the same everywhere, not tied to a locality or time zone. The Greenwich mean time, the astronomical time at Greenwich (averaged over the year) is generally used here. It is sometimes called Universal Time (UT).

Right Ascension and Declination

The globe of the heavens resembles the globe of the Earth, and positions on it are marked in a similar way, by a network of meridians stretching from pole to pole and of lines of latitude perpendicular to them, circling the sky. To study some particular galaxy, an astronomer directs the telescope to its coordinates.

On Earth, the equator is divided into 360 degrees, with the zero meridian passing Greenwich and with the longitude angle φ measured east or west of Greenwich, depending on where the corresponding meridian meets the equator.

In the sky, the equator is also divided into 360 degrees, but the count begins at one of the two points where the equator cuts the ecliptic--the one which the Sun reaches around March 21. It is called the vernal equinox ("vernal" means related to spring) or sometimes the first point in Aries, because in ancient times, when first observed by the Greeks, it was in the zodiac constellation of Aries, the ram. It has since then moved, as is discussed in the later section on precession.

The celestial globe, however, uses terms and notations which differ somewhat from those of the globe of the Earth. Meridians are marked by the angle α (alpha, Greek A), called right ascension, not longitude. It is measured from the vernal equinox, but only eastward, and instead of going from 0 to 360 degrees, it is specified in hours and other divisions of time, each hour equal to 15 degrees.

Similarly, where on Earth latitude goes from 90° north to 90° south (or -90°), astronomers prefer the co-latitude, the angle from the polar axis,equal to 0° at the north pole, 90° on the equator, and 180° at the south pole. It is called declination and is denoted by the letter δ (delta, Greek small D). The two angles (α, δ), used in specifying (for instance) the position of a star are jointly called its celestial coordinates.

Add a comment
Know the answer?
Add Answer to:
If LST is 45o , what is it in hours, minutes, and seconds? Draw a diagram to illustrate this time...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • maining Time: 2 hours 08 minutes, 33 seconds estion Completion Status: QUESTION 26 Two long straight...

    maining Time: 2 hours 08 minutes, 33 seconds estion Completion Status: QUESTION 26 Two long straight wires run parallel to each other, and carry currents flowing in the same direction. Wire 1 carries a current of 1.2 A, and wire 2 carries a current of 16 A. The wires are 15 cm apart. a) What is the magnetic field from wire 1 at the location of wire 2? b) What is the magnetic force per unit length felt by wire...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT