Question

Diesel Cycle

Consider an air-standard Diesel cycle (this means use variable specific heats). The inlet state to the compression process is

a. The pressure and temperature at each state in this cycle.

b. The compression ratio.

c. The cutoff ratio.

d. The thermal efficiency.

e. The MEP (mean effective pressure.)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

ven 75 ア,VにRTI にCo-a81〉(300 95 0.906 addition 2-3 constant .アress c reheat T2. (980) Va.3-4 sentropic exparnsion U3 2.2 U2 ス·2 114-800-5 КЈји9esComstant volume Reat gectort t usjectiort 74 Pa二(95)(0483 F4332 KPa. d) gin: 1417-05 KJ1Kg Qout=536.43 kJ/k exma 14IT05 夕๓

Add a comment
Know the answer?
Add Answer to:
Diesel Cycle a. The pressure and temperature at each state in this cycle. b. The compression ratio. c. The cutoff ratio. d. The thermal efficiency. e. The MEP (mean effective pressure.) Consider an a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2....

    An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the com pression process, air is at 95 kPa and 27℃ Accounting for the variation of specific heats with temperature, determine (a) the temperature after the heat-addition process, (b) the thermal efficiency, and (c) the mean effective pressure

  • An ideal Diesel cycle has a compression ratio of 19.9 and a cutoff ratio of 1.30. Determine the maximum temperature of...

    An ideal Diesel cycle has a compression ratio of 19.9 and a cutoff ratio of 1.30. Determine the maximum temperature of the air and the rate of heat addition to this cycle when it produces 212 hp of power, and the state of the air at the beginning of the compression is 97 kPa and 17°C. Use constant specific heats at room temperature. K (Round to the nearest integer) max kW (Round to one decimal place) in An ideal Diesel...

  • Also find thermal efficiency and the mean effective pressure please! Required information An air standard Diesel...

    Also find thermal efficiency and the mean effective pressure please! Required information An air standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process air is at 91 kPa and 27C. Account for the variation of specific heats with temperature. The gas constant of air is R-0.287 kJ/kg K. Determine the temperature after the heat addition process. (You must provide an answer before moving on to the next...

  • #4. An air-standard Diesel cycle has a compression ratio of 16 and a cut-off ratio of...

    #4. An air-standard Diesel cycle has a compression ratio of 16 and a cut-off ratio of 2. At the beginning of the compression process, air is at 95 kPa and 27 °C, Taking into account the variation of specific heats with temperature, determine (a) the temperature at the end of the heat-addition process, (b) the pressure and temperature at the end of expansion process, and (c) the total exergy destruction associated with the cycle, assuming a source temperature of 2000...

  • An Otto cycle has a compression ratio of 8. At the beginning of the compression process,...

    An Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C and 750 kJ/kg of heat is transferred to the air during the heat addition process. Accounting for the variation of specific heats with temperature, determine: a) the temperature [K] and pressure [kPa] after the compression process; b) the temperature [K] and pressure [kPa] after the heat addition process; c) the net power output [kJ/kg]; d) the thermal...

  • he pressure and temperature at the beginning of compression of a cold air-standard Diesel cycle are...

    he pressure and temperature at the beginning of compression of a cold air-standard Diesel cycle are 100 kPa and 300 K, respectively. At the end of the heat addition, the pressure is 7.2 MPa and the temperature is 2250 K. Assume constant specific heats evaluated at 300 K. Determine: (a) the compression ratio. (b) the cutoff ratio. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.

  • At the beginning of the compression process of an air standard Diesel cycle, the pressure is 109 ...

    At the beginning of the compression process of an air standard Diesel cycle, the pressure is 109 kPa and the temperature is 284 K. The volume of state 1 is 800.0 cm3. The compression ratio for the Diesel cycle is 12 and cut-off-ratio is 1.95. Determine: a) the heat addition, in kJ kJ b) the net work, in kJ kJ c) the thermal efficiency % d) the mean effective pressure, in kPa kPa At the beginning of the compression process...

  • Required information An air-standard Diesel cycle has a compression ratio of 16 and a cutoff rati...

    Required information An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process, air is at 103 kPa and 27℃. Assume constant specific heats. The properties of air at room temperature are Cp-1.005 kJ/kg-K, cv-0718 kJ/kg.K, R= 0.287 kJ/kg-K, and k = 1.4 Determine the mean effective pressure The mean effective pressure is「 kPa. Required information An air-standard Diesel cycle has a compression ratio of 16 and a...

  • Problem 1 A diesel engine has a compression ratio r = 20 and uses air as...

    Problem 1 A diesel engine has a compression ratio r = 20 and uses air as the working fluid. The state of air at the beginning of the compression process is P1 = 95 kPa and T = 20°C. However, the isentropic expansion normally occuring between state 3 and state 4 is replaced by a polytropic process along which: Pul.35 = constant. The maximum temperature in the cycle is not to exceed 2200 K. In this analysis, the variation of...

  • An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression...

    An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression process, air is at 95 kPa and 27-degree C, and 750 kJ/kg of heat is to air during the constant-volume heat-addition process. Considering the variation of specific heats with temperature (Table A-17), determine (a) the pressure and temperature at the end of the heat addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT