Question

An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the com pression process, air is at 95 kPa and 27℃ Accounting for the variation of specific heats with temperature, determine (a) the temperature after the heat-addition process, (b) the thermal efficiency, and (c) the mean effective pressure
1 0
Add a comment Improve this question Transcribed image text
Answer #1

Ans Given fhat An AA,Straasd Diesel Cycle ras a Cernanessim Yako At tna begining, an a 95kra awd 272 4 Out ラ、V Exbiess tempesV2/ 30ok x 16 989.4k T989.yk es tetenperali, pestuse aud Speci-fic Volume relatino far tre censhnt pressure hect adatio proceFor pocess 2-3, So V3 2- 909.4 1818.8k Hexce, tne temperature at the end f me haat ition process is%--siBK b) The Theimal eft-i.to5KJKg.KK909 .4太 913.3g aud specific volume velation as Vy t, Tempenliue at Stns N Specific volune at Stah 4 ScuostitutFor Constant volve heat vejeclion PICESS1, xess iht HeYe, Specific heat at Constant Volume ul = Trtenal ener7y at state l U4Subs lituto 1 in 13.93i 353に丁/kg th : 1-3862 2 0. 6138 : 0 619 díesel Cycls i 647 The mear) ve Pye SSuYe Exless the net wc oatrpess the taal gas election -foyan at state소 a.s RT Pt Here Pre sare, State 1 al ? - Jas Costart uostituta as kpa 0306 3 TheHeye, Substitute net ocut 560 93x9 大丁 the mean 다tective pressure fo the aiven diesel Cycle 66o 4 kpa, ver)

Add a comment
Know the answer?
Add Answer to:
An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Diesel Cycle a. The pressure and temperature at each state in this cycle. b. The compression ratio. c. The cutoff ratio. d. The thermal efficiency. e. The MEP (mean effective pressure.) Consider an a...

    Diesel Cycle a. The pressure and temperature at each state in this cycle. b. The compression ratio. c. The cutoff ratio. d. The thermal efficiency. e. The MEP (mean effective pressure.) Consider an air-standard Diesel cycle (this means use variable specific heats). The inlet state to the compression process is at 95 kPa and 300 K. At the end of the heat addition process, the temperature is 2150 K and the pressure is 7200 kPa. Accounting for the variation of...

  • Required information An air-standard Diesel cycle has a compression ratio of 16 and a cutoff rati...

    Required information An air-standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process, air is at 103 kPa and 27℃. Assume constant specific heats. The properties of air at room temperature are Cp-1.005 kJ/kg-K, cv-0718 kJ/kg.K, R= 0.287 kJ/kg-K, and k = 1.4 Determine the mean effective pressure The mean effective pressure is「 kPa. Required information An air-standard Diesel cycle has a compression ratio of 16 and a...

  • he pressure and temperature at the beginning of compression of a cold air-standard Diesel cycle are...

    he pressure and temperature at the beginning of compression of a cold air-standard Diesel cycle are 100 kPa and 300 K, respectively. At the end of the heat addition, the pressure is 7.2 MPa and the temperature is 2250 K. Assume constant specific heats evaluated at 300 K. Determine: (a) the compression ratio. (b) the cutoff ratio. (c) the percent thermal efficiency of the cycle. (d) the mean effective pressure, in kPa.

  • #4. An air-standard Diesel cycle has a compression ratio of 16 and a cut-off ratio of...

    #4. An air-standard Diesel cycle has a compression ratio of 16 and a cut-off ratio of 2. At the beginning of the compression process, air is at 95 kPa and 27 °C, Taking into account the variation of specific heats with temperature, determine (a) the temperature at the end of the heat-addition process, (b) the pressure and temperature at the end of expansion process, and (c) the total exergy destruction associated with the cycle, assuming a source temperature of 2000...

  • At the beginning of the compression process of an air standard Diesel cycle, the pressure is 109 ...

    At the beginning of the compression process of an air standard Diesel cycle, the pressure is 109 kPa and the temperature is 284 K. The volume of state 1 is 800.0 cm3. The compression ratio for the Diesel cycle is 12 and cut-off-ratio is 1.95. Determine: a) the heat addition, in kJ kJ b) the net work, in kJ kJ c) the thermal efficiency % d) the mean effective pressure, in kPa kPa At the beginning of the compression process...

  • An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression...

    An ideal Otto cycle has a compression ratio of 8. At the beginning of the transferred compression process, air is at 95 kPa and 27-degree C, and 750 kJ/kg of heat is to air during the constant-volume heat-addition process. Considering the variation of specific heats with temperature (Table A-17), determine (a) the pressure and temperature at the end of the heat addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the...

  • Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of...

    Required information An ideal Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27 and 720 kJ/kg of heat is transferred to air during the constant volume heat addition process. Take into account the variation of specific heats with temperature. The gas constant of air is R=0.287 kJ/kg.K. Determine the network output (You must provide an answer before moving on to the next part.) The net work output...

  • An Otto cycle has a compression ratio of 8. At the beginning of the compression process,...

    An Otto cycle has a compression ratio of 8. At the beginning of the compression process, air is at 95 kPa and 27°C and 750 kJ/kg of heat is transferred to the air during the heat addition process. Accounting for the variation of specific heats with temperature, determine: a) the temperature [K] and pressure [kPa] after the compression process; b) the temperature [K] and pressure [kPa] after the heat addition process; c) the net power output [kJ/kg]; d) the thermal...

  • Also find thermal efficiency and the mean effective pressure please! Required information An air standard Diesel...

    Also find thermal efficiency and the mean effective pressure please! Required information An air standard Diesel cycle has a compression ratio of 16 and a cutoff ratio of 2. At the beginning of the compression process air is at 91 kPa and 27C. Account for the variation of specific heats with temperature. The gas constant of air is R-0.287 kJ/kg K. Determine the temperature after the heat addition process. (You must provide an answer before moving on to the next...

  • An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression...

    An ideal Otto cycle has a compression ratio of 9. At the beginning of the compression process, air is at 100 kPa and 17°C, and 900 kJ/kg of heat is transferred to air during the constant-volume heat-addition process. Taking into account the variation of specific heats with temperature, determine (a) the pressure and temperature at the end of the heat-addition process, (b) the net work output, (c) the thermal efficiency, and (d) the mean effective pressure for the cycle .

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT