Question

(6 marks) b) Design a geothermal heat pump system to p Design a geothermal heat pump system to provide all heating and coolin

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Geothermal Heat Pumps

These geothermal heating and cooling units installed in the basement of a new home are tied to a complex array of underground coils to keep indoor temperatures comfortable.

Heating and Cooling Efficiency of Geothermal Heat Pumps

The heating efficiency of ground-source and water-source heat pumps is indicated by their coefficient of performance (COP), which is the ratio of heat provided in Btu per Btu of energy input. Their cooling efficiency is indicated by the Energy Efficiency Ratio (EER), which is the ratio of the heat removed (in Btu per hour) to the electricity required (in watts) to run the unit.

Look for the ENERGY STAR® label, which indicates that the unit meets ENERGY STAR criteria. Manufacturers of high-efficiency geothermal heat pumps (GHPs) voluntarily use the EPA ENERGY STAR label on qualifying equipment and related product literature. Many GHPs carry the U.S. Department of Energy (DOE) and Environmental Protection Agency (EPA) ENERGY STAR label.

Economics of Geothermal Heat Pumps

Although the purchase and installation cost of a residential GHP system is often higher than that of other heating and cooling systems, properly sized and installed GHPs deliver more energy per unit consumed than conventional systems. For further savings, GHPs equipped with a device called a "desuperheater" can heat household water. In the summer cooling period, the heat that is taken from the house is used to heat the water for free. In the winter, water heating costs are reduced by about half.

Depending on factors such as climate, soil conditions, the system features you choose, and available financing and incentives, you may recoup your initial investment in two to ten years through lower utility bills. And -- when included in a mortgage -- your investment in a GHP will produce a positive cash flow from the beginning. For example, if the extra $3,500 cost of the GHP will add $30 per month to each mortgage payment, the energy cost savings will easily exceed that added mortgage amount over the course of each year.

On a retrofit, the GHP's high efficiency typically means much lower utility bills, allowing the investment to be recouped in two to ten years. It may also be possible to include the purchase of a GHP system in an "energy-efficient mortgage" that would cover this and other energy-saving improvements to the home. Banks and mortgage companies can provide more information on these loans.

There are also special financing and incentives available to help offset the cost of adding a GHP to your home. These provisions are available from federal, state, and local governments; power providers; and banks or mortgage companies that offer energy-efficient mortgage loans for energy-saving home improvements. Be sure the system you're interested in qualifies for available incentives before you make your final purchase.

Evaluating Your Site for a Geothermal Heat Pump

Shallow ground temperatures are relatively constant throughout the United States, so geothermal heat pumps (GHPs) can be effectively used almost anywhere. However, the specific geological, hydrological, and spatial characteristics of your land will help your local system supplier/installer determine the best type of ground loop for your site.

Geology

Factors such as the composition and properties of your soil and rock (which can affect heat transfer rates) require consideration when designing a ground loop. For example, soil with good heat transfer properties requires less piping to gather a certain amount of heat than soil with poor heat transfer properties. The amount of soil available contributes to system design as well -- system suppliers in areas with extensive hard rock or soil too shallow to trench may install vertical ground loops instead of horizontal loops.

Hydrology

Ground or surface water availability also plays a part in deciding what type of ground loop to use. Depending on factors such as depth, volume, and water quality, bodies of surface water can be used as a source of water for an open-loop system, or as a repository for coils of piping in a closed-loop system. Ground water can also be used as a source for open-loop systems, provided the water quality is suitable and all ground water discharge regulations are met.

Before you purchase an open-loop system, be sure your system supplier/installer has fully investigated your site's hydrology, so you can avoid potential problems such as aquifer depletion and groundwater contamination. Antifreeze fluids circulated through closed-loop systems generally pose little to no environmental hazard.

Land Availability

The amount and layout of your land, your landscaping, and the location of underground utilities or sprinkler systems also contribute to your system design. Horizontal ground loops (generally the most economical) are typically used for newly constructed buildings with sufficient land. Vertical installations or more compact horizontal "Slinky™" installations are often used for existing buildings because they minimize the disturbance to the landscape.

Installing Geothermal Heat Pumps

Specialized technical knowledge and equipment is needed to properly install the piping, so a GHP system installation is not a do-it-yourself project. To find a qualified installer, contact your local utility company, the International Ground Source Heat Pump Association, or the Geothermal Heat Pump Consortium for their listings of qualified installers in your area. Installers should be certified and experienced. Ask for references from owners of systems that are several years old, and check them.

The ground heat exchanger in a GHP system is made up of a closed or open loop pipe system. Most common is the closed loop, in which high density polyethylene pipe is buried horizontally at 4 to 6 feet deep or vertically at 100 to 400 feet deep. These pipes are filled with an environmentally friendly antifreeze/water solution that acts as a heat exchanger. In the winter, the fluid in the pipes extracts heat from the earth and carries it into the building. In the summer, the system reverses and takes heat from the building and deposits it to the cooler ground.

The air delivery ductwork distributes the heated or cooled air through the house's ductwork, just like conventional systems. The box that contains the indoor coil and fan is sometimes called the air handler because it moves house air through the heat pump for heating or cooling. The air handler contains a large blower and a filter just like conventional air conditioners.

Most geothermal heat pumps are automatically covered under your homeowner's insurance policy. Contact your insurance provider to make sure. Even if your provider will cover your system, it is best to inform them in writing that you own a new system.

Benefits of Geothermal Heat Pump Systems

The biggest benefit of GHPs is that they use 25% to 50% less electricity than conventional heating or cooling systems. This translates into a GHP using one unit of electricity to move three units of heat from the earth. According to the EPA, geothermal heat pumps can reduce energy consumption -- and corresponding emissions -- up to 44% compared with air-source heat pumps and up to 72% compared with electric resistance heating with standard air-conditioning equipment. GHPs also improve humidity control by maintaining about 50% relative indoor humidity, making GHPs very effective in humid areas.

Geothermal heat pump systems allow for design flexibility and can be installed in both new and retrofit situations. Because the hardware requires less space than that needed by a conventional HVAC system, the equipment rooms can be greatly scaled down, freeing space for productive uses. GHP systems also provide excellent "zone" space conditioning, allowing different parts of your home to be heated or cooled to different temperatures.

GHP systems have relatively few moving parts and those parts are sheltered inside a building, so the systems are durable and highly reliable. The underground piping often carries warranties of 25 to 50 years, and the heat pumps often last 20 years or more. They usually have no outdoor compressors, so GHPs are not susceptible to vandalism. In addition, the components in the living space are easily accessible, which increases the convenience factor and helps ensure that the upkeep is done on a timely basis.

GHPs have no outside condensing units like air conditioners, so there's no concern about noise outside the home. A two-speed GHP system is so quiet inside a house that users usually do not know it is operating.

Add a comment
Know the answer?
Add Answer to:
(6 marks) b) Design a geothermal heat pump system to p Design a geothermal heat pump system to provide all heating and cooling needs for your home. State all assumptions made. (6 marks) (6 ma...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A geothermal heat pump can save up to 85 ​% of the annual heating and cooling...

    A geothermal heat pump can save up to 85 ​% of the annual heating and cooling bills of a certain home in the northeastern U.S. In this​ region, the yearly cost of conventionally heating and cooling a​ 2,000 square foot house is about ​$2 comma 600 . With a federal tax credit of 30 ​% on the total installation of the​ system, how much can a homeowner afford to spend for a geothermal heat pump if the interest rate is...

  • Que.2a With suitable diagrams, describe the geothermal resource types 6 marks) b Show that the efficiency of a heat pump is higher in the heating mode than in the cooling mode. (2 marks) Que.2c A...

    Que.2a With suitable diagrams, describe the geothermal resource types 6 marks) b Show that the efficiency of a heat pump is higher in the heating mode than in the cooling mode. (2 marks) Que.2c A heat pump is used to heat a house in the winter and cool it in the summer. The loads are 5000W in the winter with a house temperature of 20° C and 4000W in the summer with a house temperature of 25° C. Determine the...

  • Austin needs to purchase a new heating/cooling system for his home. He is thinking about having a geothermal system inst...

    Austin needs to purchase a new heating/cooling system for his home. He is thinking about having a geothermal system installed, but he wants to know how long it will take to recoup the additional cost of the system. The geothermal system will cost $20,000. A conventional system will cost $7,000. Austin is eligible for a 30% tax credit to be applied immediately to the purchase. He estimates that he will save $1,500 per year in utility bills with the geothermal...

  • The heat-pump system shown is designed to provide water-heating and space-cooling. The system includes a heat...

    The heat-pump system shown is designed to provide water-heating and space-cooling. The system includes a heat exchanger to subcool the R134a refrigerant at the outlet of the water heater while heating the refrigerant at the outlet of the evaporator. Given the following data, determine the enthalpy at each station, 1 through 6, using the R134a property tables (click here). Type your answers hy through h6 in the space provided below, and show all your work on your paper. · At...

  • now pleassse QUESTI 20 points Save An The heat-pump system shown is designed to provide water...

    now pleassse QUESTI 20 points Save An The heat-pump system shown is designed to provide water heating and space-cooling. The system includes a heat exchanger to subcool the R134a refrigerant at the outlet of the water heater while heating the refrigerant at the outlet of the evaporator. Given the following data, determine the enthalpy at each station, 1 through 6, using the R134a property tables (click here). Type your answers hy through h6 in the space provided below, and show...

  • 1. (8pts) Heating load represents the amount of heat that needs to provide to a room...

    1. (8pts) Heating load represents the amount of heat that needs to provide to a room to maintain a designed indoor temperature. The main heat loss is the heat transfer via building envelope (exterior walls and roof) and windows. Assume you are required to design a heating system for a building, and the first task is to compute the building loads. In your analysis, would you prefer to treat this as a transient or steady-state heat transfer problem? Also, would...

  • Problem 4.049 A pump is used to circulate hot water in a home heating system. Water...

    Problem 4.049 A pump is used to circulate hot water in a home heating system. Water enters the well-insulated pump operating at steady state at a rate of 0.42 gal/min. The inlet pressure and temperature are 14.7 lbf/in., and 180°F, respectively; at the exit the pressure is 90 lbf/in. The pump requires 1/35 hp of power input. Water can be modeled as an incompressible substance with constant density of 60.58 lb/ft and constant specific heat of 1 Btu/lb OR Neglecting...

  • PLEASE ANSWER QUICKLY!! I WILL THUMBS UP! Thank you so much in advance!! The heat-pump system...

    PLEASE ANSWER QUICKLY!! I WILL THUMBS UP! Thank you so much in advance!! The heat-pump system shown is designed to provide water-heating and space-cooling. The system includes a heat exchanger to subcool the R134a refrigerant at the outlet of the water heater while heating the refrigerant at the outlet of the evaporator. Given the following data, determine the enthalpy at each station, 1 through 6, using the R134a property tables (click here). Type your answers hy through h6 in the...

  • QUESTION 1 (10 Marks) a) State two assumptions for the Bernoulli equation and explain why that...

    QUESTION 1 (10 Marks) a) State two assumptions for the Bernoulli equation and explain why that assumptions been made. (2 marks) b) Analyze the venturi meter in Fig 1 for flow rate of the air jet coming out from the throat as shown. State all your assumptions in doing so. Assume the air density is 1.28 kg/m² [6 marks) c) If the water level is only 1 cm, how much would Vichange? Justify your answer. No calculation needed. [2 marks]...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT