Question

A stream containing ethane gas (C2He) enters the inner pipe of a double-pipe heat exchanger at 40°C and 105 kPa and exits fro
0 0
Add a comment Improve this question Transcribed image text
Answer #1

do 3502453-7 ST 0.04937+o.o00139T 246 110 2 しゃ Me 11-15

Add a comment
Know the answer?
Add Answer to:
A stream containing ethane gas (C2He) enters the inner pipe of a double-pipe heat exchanger at 40°C and 105 kPa and exits from the pipe at 240*C and the same pressure. Superheated steam at 315 C...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Propane gas enters a continuous adiabatic heat exchanger 240°C. Superheated steam at 300 C and 5 bar enters the exchang...

    Propane gas enters a continuous adiabatic heat exchanger 240°C. Superheated steam at 300 C and 5 bar enters the exchanger flowing countercurrently to the propane and exits as a saturated liquid at the same pressure at 40 C and 250 kPa and exits at Taking flow chart. Include both mass and volumes on your inlet and outlet streams. b. Calculate the specific enthalpy values for the inlet and outlet streams. c. Use an energy balance to calculate the required mass...

  • pls Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa)...

    pls Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa) and exits at (260°C). Superheated steam at (400°C) and (5 bar) enters to exchanger flowing counter currently to a Toluene and exits as a saturated liquid at the same pressure. 1- If (150 mol) of Toluene is fed, draw and label a process flow chart. 2- Calculate the values of inlet-outlet enthalpies. 3- Calculate the volumetric feed ratio of the two streams (m' steam...

  • please Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa)...

    please Q4/ Toluene gas (C,Hg) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa) and exits at (260°C). Superheated steam at (400°C) and (5 bar) enters to exchanger flowing counter currently to a Toluene and exits as a saturated liquid at the same pressure. 1- If (150 mol) of Toluene is fed, draw and label a process flow chart. 2- Calculate the values of inlet-outlet enthalpies. 3- Calculate the volumetric feed ratio of the two streams (m' steam...

  • Q4/ Toluene gas (CH3) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa) and...

    Q4/ Toluene gas (CH3) enters a continuous adiabatic heat exchanger at (35°C) and (300 KPa) and exits at (260°C). Superheated steam at (400°C) and (5 bar) enters to exchanger flowing counter currently to a Toluene and exits as a saturated liquid at the same pressure. 1- If (150 mol) of Toluene is fed, draw and label a process flow chart. 2- Calculate the values of inlet-outlet enthalpies. 3- Calculate the volumetric feed ratio of the two streams (m' steam fed/mºtoluene...

  • An adiabatic heat exchanger is one for which no heat is exchanged with the surroundings. All...

    An adiabatic heat exchanger is one for which no heat is exchanged with the surroundings. All of the heat lost by the hot stream is transferred to the cold stream in this adiabatic process. In a proposed process, propane gas enters a continuous adiabatic heat exchanger at 45 °C and 265 kPa and exits at 255 °C. Superheated steam at 300 °C and 7.0 bar enters the exchanger flowing countercurrently to the propane and exits as a saturated liquid at...

  • Problem 3 Steam enters a heat exchanger at 0.1 bar with a quality of 0.95 and...

    Problem 3 Steam enters a heat exchanger at 0.1 bar with a quality of 0.95 and condensate exits at 0.1 bar and 45'C. Cooling water enters the heat exchanger in a separate stream as a liquid at 20'C and exits as a liquid at 35 C with no changes in pressure. Heat transfer from the outside of the heat exchanger and changes in the kinetic and potential energies of the flowing streams can be ignored. For steady state operation, (a)...

  • Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality...

    Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality of 0.9 and exits at the same pressure as saturated liquid. The steam mass flow rate is 1.3 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30oC and exits at 60oC. The ideal gas model with cp = 1.005 kJ/kg·K can be assumed for air. Kinetic and potential energy effects are negligible. Determine the temperature of...

  • 2) Hot air enters a heat exchanger at 350°C and exits at 153°C. The heat extracted...

    2) Hot air enters a heat exchanger at 350°C and exits at 153°C. The heat extracted is used to boil 0.277 kg/s of 100°C water (from saturated liquid to saturated steam). The heat exchanger is a single-shell shell-and-tube heat exchanger with two tube passes. The overall heat transfer coefficient for the hot side is 240 W/(m2). Assume a constant specific heat for air of cp = 1.005 kJ/(kg°C). The pressure of the hot air and the boiling water is P...

  • Hot air enters a heat exchanger at 350°C and exits at (149°C. The heat extracted is...

    Hot air enters a heat exchanger at 350°C and exits at (149°C. The heat extracted is used to boil (0.263) kg/s of 100°C water (from saturated liquid to saturated steam). The heat exchanger is a single-shell shell-and-tube heat exchanger with two tube passes. The overall heat transfer coefficient for the hot side is 240 W/(m2°C). Assume a constant specific heat for air of Cp = 1.005 kJ/(kgC). The pressure of the hot air and the boiling water is P =...

  • 2) Hot air enters a heat exchanger at 350°C and exits at 155°C. The heat extracted...

    2) Hot air enters a heat exchanger at 350°C and exits at 155°C. The heat extracted is used to boil 0.283 kg/s of 100°C water (from saturated liquid to saturated steam). The heat exchanger is a single-shell shell-and-tube heat exchanger with two tube passes. The overall heat transfer coefficient for the hot side is 240 W/(m²°C). Assume a constant specific heat for air of Cp = 1.005 kJ/(kg °C). The pressure of the hot air and the boiling water is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT