Question

3. Consider the electromagnetic wave k=(0.2) where .A Draw the electric field E, magnetic field B and Poynting vector S at thb) the condition F. k-2 when t-o. Side view 3D view3.B Calculate the wavelength λ of the wave (6). Compare the magnitude of λ with the magnitude of k. 3.C Wave (6) is expressed

3. Consider the electromagnetic wave k=(0.2) where .A Draw the electric field E, magnetic field B and Poynting vector S at the points = (x, y, z) that fulfill: a) th when t-0. - e condition-k = 0 Side view 3D view
b) the condition F. k-2 when t-o. Side view 3D view
3.B Calculate the wavelength λ of the wave (6). Compare the magnitude of λ with the magnitude of k. 3.C Wave (6) is expressed in terms of k. Express wave (6) in terms of .
0 0
Add a comment Improve this question Transcribed image text
Answer #1


木 8 bFaem.ams acceht giad mar) it u de.of the arn er cel2. mu 1+-ト1red.by, 3 6) o.2 whore R ts unit vecterale» wave vector

Add a comment
Know the answer?
Add Answer to:
3. Consider the electromagnetic wave k=(0.2) where .A Draw the electric field E, magnetic field B and Poynting vector S at the points = (x, y, z) that fulfill: a) th when t-0. - e condition-k = 0 Sid...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The Poynting vector for an electromagnetic wave is given by (300W/m2)sin2[(1000m−1)z−(3.0×1011s−1)t]k^. Part B What is the...

    The Poynting vector for an electromagnetic wave is given by (300W/m2)sin2[(1000m−1)z−(3.0×1011s−1)t]k^. Part B What is the time-averaged energy per unit time radiated through a 1.0 m2 surface aligned with its normal parallel to the direction of propagatio Part C At an instant when the electric field is in the +x direction, in what direction is the magnetic field? in the −y direction in the +y direction in the −x direction in the −z direction in the +z direction in the...

  • Question 2: For an electromagnetic plane wave, the electric field is given by: Ē = E,...

    Question 2: For an electromagnetic plane wave, the electric field is given by:$$ \vec{E}=E_{0} \cos (k z+\omega t) \hat{x}+0 \hat{y}+0 \hat{z} $$a) Determine the direction of propagation of the electromagnetic wave.b) Find the magnitude and direction of the magnetic field for the given electromagnetic wave \(\vec{B}\).c) Calculate the Poynting vector associated with this electromagnetic wave. What direction does this vector point? Does this makes sense?d) If the amplitude of the magnetic field was measured to be \(2.5 * 10^{-7} \mathrm{~T}\),...

  • 1. The electric field of an electromagnetic wave traveling through vacuum is the following: 5.90x1 :...

    1. The electric field of an electromagnetic wave traveling through vacuum is the following: 5.90x1 : + a. Draw a qualitative sketch of this E function for t = 0. Add the B field as well to complete the EM wave. Be sure to label the axes. Don't worry about your drawing ability. b. What is the magnitude of the magnetic field B.? C. What is the wavelength of the EM wave? d. What is the frequency of the EM...

  • The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 427 nm, propagating...

    The magnetic field in a plane monochromatic electromagnetic wave with wavelength λ = 427 nm, propagating in a vacuum in the z-direction is described by B⃗=(B1sin(kz−ωt))(i^+j^)B→=(B1sin⁡(kz−ωt))(i^+j^) where B1 = 7.6 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively. 1) What is k, the wavenumber of this wave? 2) What is zmax, the distance along the positive z-axis to the position where the magnitude of the magnetic field is a maximum...

  • Electromagnetic Waves 1 2 3 468 The magnetic field in a plane monochromatic electromagnetic wave with...

    Electromagnetic Waves 1 2 3 468 The magnetic field in a plane monochromatic electromagnetic wave with wavelength 1 = 674 nm, propagating in a vacuum in the z-direction is described by B= (Bộ sin(kz - t) (+3) where B, = 4.8 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x and +y directions, respectively. 1) What is k, the wavenumber of this wave? m1 Submit 2) What is Zmax, the distance along the positive Z-axis...

  • The magnetic field in a plane monochromatic electromagnetic wave with wavelength vacuum in the z-direction is described...

    The magnetic field in a plane monochromatic electromagnetic wave with wavelength vacuum in the z-direction is described by - 561 nm, propagating in a B = (B1 sin(kz - @))i + where B1 - 6.8 x 10-6 T, and i-hat and j-hat are the unit vectors in the +x and y directions, respectively. 6) What is tmax, the first time after t - 0, when the magnitude of the electric field at the origin (x-y-z-0) has its maxiumum value? s...

  • Problem 3:   A sinusoidal plane electromagnetic wave travels in a vacuum in the x direction as...

    Problem 3:   A sinusoidal plane electromagnetic wave travels in a vacuum in the x direction as shown in the graph. The period of the wave is T = 2.5 × 10-8 s. Randomized VariablesT = 2.5 × 10-8 s Part (a) Express the wavelength of the wave, λ, in terms of T and the speed of light, c. Part (b) Solve for the numerical value of λ in m. Part (c) Write the equation of the frequency, f, in terms...

  • Write equations for both the electric and magnetic fields for an electromagnetic wave in the red...

    Write equations for both the electric and magnetic fields for an electromagnetic wave in the red part of the visible spectrum that has a wavelength of 718 nm and a peak electric field magnitude of 3.6 V/m. (Use the following as necessary: t and x. Assume that E is in volts per meter, B is in teslas, t is in seconds, and x is in meters. Do not include units in your answer. Assume that E = 0 and B...

  • (6%) Problem 3: The magnetic field of an electromagnetic wave is described by By = Bocos(kor...

    (6%) Problem 3: The magnetic field of an electromagnetic wave is described by By = Bocos(kor - wt), where Bo = 2.5 x 10-6 T and w=2.5 107 rad/s. Randomized Variables Bo = 2.5 x 10-61 w=2.5 * 107 rad/s A 20% Part (a) What is the amplitude of the corresponding electric field oscillations, Eo, in terms of Bo? Eo=1 G D PO a 00 HOME B 0 d 7 TA 4 8 9 6 St A Во 5 с...

  • (8%) Problem 1: The magnetic field of an electromagnetic wave is described by B, = Bocos(kor...

    (8%) Problem 1: The magnetic field of an electromagnetic wave is described by B, = Bocos(kor - wt), where Bo =2.5 x 10-6 T and w = 7.5 x 107 rad/s. Randomized Variables Bo = 2.5 x 10-61 m = 7.5 x 107 rad/s @theexpertta.com - tracking id In accordance with Expert TA's Terms of Service. copying this information to any solutions sharing website is strictly forbidden. Doing so may result in termination of your Expert TA Account. A 20%...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT