Question

The open loop transfer function of an electro-mechanical system with unity feedback is: 24K G(s) S(s+2)(s +6) The Nyquist dia

0 0
Add a comment Improve this question Transcribed image text
Answer #1

24K 02 1 24 24 2.4 ) ae@ )GLt36) L s 24 KwJr. -24xgare (e.可 aan.at os-ole , 130 12f4 ) (12f36) 。 (Jhen k 1, The fYequa(옛 at-T19.2 24 K 17.2 2 1q.2 19.2 -35, 67 37, 17 s,-66376 santim .. χ 1711 SYAd/s . いと 308 rads,in rese guew Phere amote :-135.4824 k No 1236) 24 v 19.2 19.2 Rors not chau the. con dane, the addition t oc a te aancs overs (-135, 4827-Agca)> (180,) Agc74

Add a comment
Know the answer?
Add Answer to:
The open loop transfer function of an electro-mechanical system with unity feedback is: 24K G(s) S(s+2)(s +6) The Nyquist diagram of G(s) has a shape similar to the one shown below Nyquist diagram Cl...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • P10.35 A unity feedback system has the loop transfer function -Ts Ks + 0.54 L(s) =...

    P10.35 A unity feedback system has the loop transfer function -Ts Ks + 0.54 L(s) = Gc(s)G(s) = *S cos(s + 1.76) where T is a time delay and K is the controller propor- tional gain. The block diagram is illustrated in Figure P10.35. The nominal value of K = 2. Plot the phase margin of the system for 0 < T = 2 s when K = 2. What happens to the phase margin as the time delay LUDronel...

  • b) The Nyquist plot of a unity feedback control system is as shown in Figure Q5(b)....

    b) The Nyquist plot of a unity feedback control system is as shown in Figure Q5(b). Nyqulst Diagram x 10 1.5 1- System: N Real: -9.08e-005 0.5- Imag: -5.62e-006 Frequency (rad/sec): -104 -0.5 -15 -1.5 0.5 0.5 1.5 1 2.5 3.5 Real Axis x 10 Figure Q5(b) K If the transfer function of the system is given as G(s) (s+10)(s+50)(s+150) determine the following: The closed loop stability of the system using Nyquist Stability Criterion. i) ii) Gain margin and phase...

  • A unity gain negative feedback system has an open-loop transfer function given by 4. s) =...

    A unity gain negative feedback system has an open-loop transfer function given by 4. s) = s(1 + 10s)(1 + 10s)? Draw a Bode diagram for this system and determine the loop gain K required for a phase margin of 20 deg. What is the gain margin? 5. We are given the closed-loop transfer function 10(s + 1) T(s) = 82+98+10 for a "unity feedback" system and asked to find the open-loop transfer function, generate a log-magnitude-phase plot for both...

  • For the unity feedback system in the below figure, 1. EGO) R(s)) C(s) G(s)K (s 1) (s + 4) a) Sket...

    For the unity feedback system in the below figure, 1. EGO) R(s)) C(s) G(s)K (s 1) (s + 4) a) Sketch the bode plot with Matlab command bode0 b) Plot the nyquist diagram using Matlab command nyquist(0, find the system stability c) Find phase margin, gain margin, and crossover frequencies using Matlab command margin(0 and find the system stability For the unity feedback system in the below figure, 1. EGO) R(s)) C(s) G(s)K (s 1) (s + 4) a) Sketch...

  • A unity feedback control system has the open loop TF as

    A unity feedback control system has the open loop TF as: \(G(s)=\frac{K(s+a+1)(s+b)}{s(s+a)(s+a+2)}\)a) Find analytical expressions for the magnitude and phase response for \(\mathrm{G}(\mathrm{s}) .\left[K=K_{1}\right]\)b) Make a plot of the log-magnitude and the phase, using log-frequency in rad/s as the ordinate. \(\left[K=K_{1}\right]\)c) Sketch the Bode asymptotic magnitude and asymptotic phase plots. \(\left[K=K_{1}\right]\)d) Compare the results from \((a),(b)\), and \((c) .\left[K=K_{1}\right]\)e) Using the Nyquist criterion, find out if system is stable. Show your steps. \(\left[K=K_{1}\right]\)f) Using the Nyquist criterion, find the range...

  • QUESTION 4 A unity feedback system has open-loop transfer function G(S). Polar plot of G(jw) is...

    QUESTION 4 A unity feedback system has open-loop transfer function G(S). Polar plot of G(jw) is shown in the figure below. The gain margin (GM) and the phase margin (ØM) of the feedback system are None of the answers is correct b. GM = 0.3 and ØM = 112.33º O GM = -0.3 and ØM = 112.33 d. GM = 3.33 and ØM = 67.67° QUESTION 8 A unity feedback system as open-loop transfer function G(s) = 5(1 +ST) The...

  • 4. Consider a unity-feedback control system with the following open-loop transfer function: G(s)3 Sketch a Nyquist...

    4. Consider a unity-feedback control system with the following open-loop transfer function: G(s)3 Sketch a Nyquist plot of G(s) and examine the stability of the system.

  • 7. Consider a unity feedback control system with open-loop transfer function G(s) = k 5 s...

    7. Consider a unity feedback control system with open-loop transfer function G(s) = k 5 s + 2)(52 + 4s + 5) Find the value of gain K > 0 for which the root locus crosses the imaginary axis.

  • Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s).

    1 Consider the system shown as below. Draw a Bode diagram of the open-loop transfer function G(s). Determine the phase margin, gain-crossover frequency, gain margin and phase-crossover frequency, (Sketch the bode diagram by hand) 2 Consider the system shown as below. Use MATLAB to draw a bode diagram of the open-loop transfer function G(s). Show the gain-crossover frequency and phase-crossover frequency in the Bode diagram and determine the phase margin and gain margin. 3. Consider the system shown as below. Design a...

  • [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus...

    [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain K as a variable s(s+4) (s2+4s+20)' Determine asymptotes, centroid,, breakaway point, angle of departure, and the gain at which root locus crosses jw -axis. [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT