Question

is attached to a string and rotated in a vertical circle of radius 04 m with constant speed of 12 m/s. Calculate the tension
0 0
Add a comment Improve this question Transcribed image text
Answer #1

SoP 5) a)Tensiom ot top top b) 28X24x3600 C) 6.67 X10 Mc -2.12 x1028 kq

Add a comment
Know the answer?
Add Answer to:
is attached to a string and rotated in a vertical circle of radius 04 m with constant speed of 12 m/s. Calculate the tension of the bottom of the circle. string at the top and the (b) Moon is rev...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 0.060-kg tennis ball, moving with a speed of 5.3 m/s , has a head-on collision...

    A 0.060-kg tennis ball, moving with a speed of 5.3 m/s , has a head-on collision with a 8.5×10−2-kg ball initially moving in the same direction at a speed of 3.1 m/s . Part A Assuming a perfectly elastic collision, determine the speed of each ball after the collision. Enter your answers numerically separated by a comma. Express your answers using two significant figures. v′tennis ball v t e n n i s b a l l ′ , v′ball...

  • A 0.060-kg tennis ball, moving with a speed of 5.0 m/s, has a head-on collision with...

    A 0.060-kg tennis ball, moving with a speed of 5.0 m/s, has a head-on collision with a 8.0x10-2-kg ball initially moving in the same direction at a speed of 2.4 m/s. Part A Assuming a perfectly elastic collision, determine the speed of each ball after the collision. Enter your answers numerically separated by a comma. Express your answers using two significant figures AZO tennis ball ball m/s Submit Request Answer Part B Determine the direction of tennis ball after the...

  • A 0.25 kg ball moving at a speed of 3 m/s, along the positive x-axis, strikes...

    A 0.25 kg ball moving at a speed of 3 m/s, along the positive x-axis, strikes a stationary horizontal ball of mass 0.30 kg. (a) If the collision is perfectly inelastic, what is the velocity and direction of the balls? (b) If the second ball moves at a rate of 1 m/s towards the positive x-axis, what is the velocity and direction of the first 2. ball after collision?

  • 37° 37 Vi 1x104 m/s V-2500 m/s V-200 m/s SP2. A fiery 500 kg asteroid is...

    37° 37 Vi 1x104 m/s V-2500 m/s V-200 m/s SP2. A fiery 500 kg asteroid is hurtling towards earth at a whapping speed of 200 m/s. Superman comes to the rescue of the planet and flies towards the asteroid as shown in the picture below. Superman has a mass of 100 kg and is flying with an initial speed of 1x104 m/s. After the collisiorn Superman comes to rest and the asteroid breaks into two pieces. Speed of the 200...

  • Billiard ball A of mass mA = 0.125 kg moving with speed vA = 2.80 m/s...

    Billiard ball A of mass mA = 0.125 kg moving with speed vA = 2.80 m/s strikes ball B, initially at rest, of mass mB = 0.140 kg . As a result of the collision, ball A is deflected off at an angle of θ′A = 30.0∘ with a speed v′A = 2.10 m/s, and ball B moves with a speed v′B at an angle of θ′B to original direction of motion of ball A. Part C Solve these equations...

  • Billiard ball A of mass mA = 0.119 kg moving with speed vA = 2.80 m/s...

    Billiard ball A of mass mA = 0.119 kg moving with speed vA = 2.80 m/s strikes ball B, initially at rest, of mass mB = 0.141 kg . As a result of the collision, ball A is deflected off at an angle of θ′A = 30.0∘ with a speed v′A = 2.10 m/s, and ball B moves with a speed v′B at an angle of θ′B to original direction of motion of ball A. Solve these equations for the...

  • 10. A 2.0 kg ball moving with a speed of 3.0 m/s hits, elastically, an identical...

    10. A 2.0 kg ball moving with a speed of 3.0 m/s hits, elastically, an identical stationary ball as shown. If the first ball moves away with angle 30 Degree to the original path, determine a. the speed of the first ball after the collision. b. the speed and direction of the second ball after the collision.

  • A 0.230 kg billiard ball that is moving at 5.00 m/s strikes the bumper of a...

    A 0.230 kg billiard ball that is moving at 5.00 m/s strikes the bumper of a pool table and bounces straight back at 4.00 m/s (80% of its original speed). The collision lasts 0.0220 s. (Assume that the ball moves in the positive direction initially.) (a) Calculate the average force (in N) exerted on the ball by the bumper. (Indicate the direction with the sign of your answer) (b) How much kinetic energy in joules is lost during the collision?...

  • A 0.180 kg billiard ball that is moving at 3.10 m/s strikes the bumper of a...

    A 0.180 kg billiard ball that is moving at 3.10 m/s strikes the bumper of a pool table and bounces straight back at 2.48 m/s (80% of its original speed). The collision lasts 0.0220 s. (Assume that the ball moves in the positive direction initially.) (a) Calculate the average force (in N) exerted on the ball by the bumper. (Indicate the direction with the sign of your answer.) (b) How much kinetic energy in joules is lost during the collision?...

  • A 0.190 kg billiard ball that is moving at 2.10 m/s strikes the bumper of a...

    A 0.190 kg billiard ball that is moving at 2.10 m/s strikes the bumper of a pool table and bounces straight back at 1.68 m/s (80% of its original speed). The collision lasts 0.0110 s. (Assume that the ball moves in the positive direction initially.) a) Calculate the average force (in N) exerted on the ball by the bumper. (Indicate the direction with the sign of your answer. b) How much kinetic energy in joules is lost during the collision?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT