Question

eN) For the spring-mass system shown, assume that m= 1 kg and k = 8m and the motion is fee Set up the 2 order ODE fot each s

0 0
Add a comment Improve this question Transcribed image text
Answer #1

motio 0 in mt -4t acs Trecsfm S41) 7-4 ($41) -교 21s 145132 +2+922 S42 2 -at ne 3r

Add a comment
Know the answer?
Add Answer to:
eN) For the spring-mass system shown, assume that m= 1 kg and k = 8m and the motion is fee Set up the 2" order ODE...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A spring-mass-dashpot system for the motion of a block of mass m kg is shown in...

    A spring-mass-dashpot system for the motion of a block of mass m kg is shown in Fig. II-2. The block is moved to the right of the equilibrium position and is released from rest (time t = 0) when its displacement, x = XO. Using the notations given in Fig. II-2,4 (1) Draw the free body diagram of the block - (2) Write the equation of motion of the block- If the initial displacement of the block to the right...

  • A spring-mass-dashpot system for the motion of a block of mass m kg is shown in...

    A spring-mass-dashpot system for the motion of a block of mass m kg is shown in Fig. II-2. The block is moved to the right of the equilibrium position and is released from rest (time t = 0) when its displacement, x = XO. Using the notations given in Fig. II-2,4 (1) Draw the free body diagram of the block - (2) Write the equation of motion of the block- If the initial displacement of the block to the right...

  • A device is being designed that can be modeled as a mass-spring system. The mass-spring constant ...

    A device is being designed that can be modeled as a mass-spring system. The mass-spring constant is k - 10 g/sec2 and the damping coefficient is μ 20 g/sec. a. Now the mass is pulled down 5 cm from rest and given an upward velocity of 10 cm/sec. Determine the IVP describing the motion of the mass b. Solve the resulting DE from part a Sketch the graph of the motion. d. Find the maximum displacement of the mass once...

  • 4 HW_2nd ODE Application Part A) Mass spring damper system as represented in the figure. If...

    4 HW_2nd ODE Application Part A) Mass spring damper system as represented in the figure. If the block has a mass of 0.25 (kg) started vibrated freely from rest at the equilibrium position, the spring is a massless with a stiffness of 4 (N/m) and the damping coefficient C (Ns/m) such that c is less than 4 Ns/m. Find all possible equations of motion for the block. k 772 TH Part B) If a two DC motors applied an external...

  • 3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following seco...

    3. The motion of a 1DOF mass-spring-damper system (see Figure 1) is modeled by the following second order linear ODE: dx,2 dt n dt2 (0) C dt where is the damping ratio an wn is the natural frequency, both related to k, b, and m (the spring constant, damping coefficient, and mass, respectively) (a) Use the forward difference approximations of (b) Using Δt andd to obtain a finite difference formula for x(t+ 2Δ) (like we did in class for the...

  • A -kg mass is attached to a spring with stiffness 10 N/m. The damping constant for the system is ...

    A -kg mass is attached to a spring with stiffness 10 N/m. The damping constant for the system is 2 4 N-sec/m. If the mass is moved - m to the left of equilibrium and given an initial rightward velocity of - m/sec, determine the equation of motion of the mass and give its damping factor, quasiperiod, and quasifrequency. What is the equation of motion? 15 2 (Type an exact answer, using radicals as needed.) A -kg mass is attached...

  • Ignore damping forces. A mass of 4 kg is attached to a spring with constant k- 16 N/m, then the s...

    Ignore damping forces. A mass of 4 kg is attached to a spring with constant k- 16 N/m, then the spring is stretched 1 m beyond its natural length and given an initial velocity of 1 m/sec back towards its equilibrium position. Find the circular frequency ω, period T, and amplitude A of the motion. (Assume the spring is stretched in the positive direction.) A 7 kg mass is attached to a spring with constant k 112 N m. Given...

  • Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant...

    Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant is c =24 lb-sec/ft, and the spring constant is k=52lb/ft. The motion is free damped motion and the mass is set in motion with initial position x0=5ft and the initial velocity v0= -7ft/sec. Find the position function x(t) and determine whether the motion is overdamped, critically damped, or underdamped.

  • 2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m...

    2 with spring stiffness k 1000 N/m, Consider a mass-spring-damper system shown in Figure mass m = 10 kg, and damping constant c-150 N-s/m. If the initial displacement is xo-o and the initial velocity is 10 m/s (1) Find the damping ratio. (2) Is the system underdamped or overdamped? Why? (3) Calculate the damped natural frequency (4) Determine the free vibration response of the system.

  • Question 6 (Second-order system - log decrement). A mass-spring-damper system has a mass of 100 kg....

    Question 6 (Second-order system - log decrement). A mass-spring-damper system has a mass of 100 kg. Its free response amplitude decays such that the amplitude of the 30th cycle is 20% of the amplitude of the 1st cycle. It takes 60 sec to complete 30 cycles. Estimate the damping constant c and the spring constant k.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT