Question

Figure p9.55 shows a collision between three balls of clay.The three hit simultaneously and stick together. What are th...

Figure p9.55 shows a collision between three balls of clay.The three hit simultaneously and stick together. What are the speedand direction of the resulting blob of clay?Figure p9.55 shows a collision between three balls
0 0
Add a comment Improve this question Transcribed image text
Answer #1
Concepts and reason

The required concepts to solve the problem are conservation of momentum and vector algebra.

First, find the speed of the resulting blob using the conservation of momentum and then find the direction of the resulting blob using vector algebra.

Fundamentals

According to the law of conservation of momentum, the momentum before collision is equal to the momentum after collision.

When two objects collide, according to law of conservation of momentum

m1u1+m2u2=m1v1+m2v2{m_1}{u_1} + {m_2}{u_2} = {m_1}{v_1} + {m_2}{v_2}

Here, m1{m_1}is the mass of the first particle, m2{m_2}is the mass of the second particle, u1{u_1}is the velocity of the first mass before collision, u2{u_2}is the velocity of the second mass before collision, v1{v_1}is the velocity of the first mass after collision v2{v_2}is the velocity of the second mass after collision.

If a vector is represented by,

X=xi^+yj^\vec X = x\hat i + y\hat j

Then the direction of the vector is given by,

θ=tan1(yx)\theta = {\tan ^{ - 1}}\left( {\frac{y}{x}} \right)

Here, xxis the xxcomponent of the velocity andyyis the yycomponent of the velocity.

Applying conservation of momentum in the horizontal direction,

m1u1cosθ1+m2u2cosθ2+m3u3cosθ3=Mvx{m_1}{u_1}\cos {\theta _1} + {m_2}{u_2}\cos {\theta _2} + {m_3}{u_3}\cos {\theta _3} = M{v_x}

Here, θ1{\theta _1}is the angle made by the velocity of the first particle with the horizontal, θ2{\theta _2}is the angle made by the velocity of the second particle with the horizontal,θ3{\theta _3}is the angle made by the velocity of the third particle with the horizontal, MMis the mass of the resulting blob andvx{v_x}is the horizontal component of the velocity of the resulting blob.

Substitute40g40\,{\rm{g}}form1{m_1}, 4m/s4\,{\rm{m/s}}foru1{u_1}and4545^\circ forθ1{\theta _1}in m1u1cosθ1{m_1}{u_1}\cos {\theta _1}.

m1u1cosθ1=((40g)(103kg1g))(4m/s)cos45=0.113kgm/s\begin{array}{c}\\{m_1}{u_1}\cos {\theta _1} = \left( {\left( {40\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right)\left( {4\,{\rm{m/s}}} \right)\cos 45^\circ \\\\ = 0.113\,{\rm{kg}} \cdot {\rm{m/s}}\\\end{array}

Substitute20g20\,{\rm{g}}form2{m_2}, 2m/s2\,{\rm{m/s}}foru2{u_2}and9090^\circ forθ2{\theta _2}inm2u2cosθ2{m_2}{u_2}\cos {\theta _2}.

m2u2cosθ2=((20g)(103kg1g))(2m/s)cos90=0kgm/s\begin{array}{c}\\{m_2}{u_2}\cos {\theta _2} = \left( {\left( {20\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right)\left( {2\,{\rm{m/s}}} \right)\cos 90^\circ \\\\ = 0\,{\rm{kg}} \cdot {\rm{m/s}}\\\end{array}

Substitute 30g30\,{\rm{g}}form3{m_3}, 3m/s3\,{\rm{m/s}}foru3{u_3}, 180180^\circ forθ3{\theta _3}in m3u3cosθ3{m_3}{u_3}\cos {\theta _3}.

m3u3cosθ3=((30g)(103kg1g))(3m/s)cos180=0.09kgm/s\begin{array}{c}\\{m_3}{u_3}\cos {\theta _3} = \left( {\left( {30\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right)\left( {3\,{\rm{m/s}}} \right)\cos 180^\circ \\\\ = - 0.09\,{\rm{kg}} \cdot {\rm{m/s}}\\\end{array}

Substitute90g90\,{\rm{g}}forMM.

Mvx=((90g)(103kg1g))vxM{v_x} = \left( {\left( {90\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right){v_x}

Substitute 0.113kgm/s0.113\,{\rm{kg}} \cdot {\rm{m/s}} for m1u1cosθ1{m_1}{u_1}\cos {\theta _1}, 0kgm/s0\,{\rm{kg}} \cdot {\rm{m/s}} for m2u2cosθ2{m_2}{u_2}\cos {\theta _2}, 0.09kgm/s - 0.09\,{\rm{kg}} \cdot {\rm{m/s}} form3u3cosθ3{m_3}{u_3}\cos {\theta _3} and ((90g)(103kg1g))vx\left( {\left( {90\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right){v_x} for MvxM{v_x} in the equation of conservation of momentum, m1u1cosθ1+m2u2cosθ2+m3u3cosθ3=Mvx{m_1}{u_1}\cos {\theta _1} + {m_2}{u_2}\cos {\theta _2} + {m_3}{u_3}\cos {\theta _3} = M{v_x} becomes,

(0.113kgm/s)+(0kgm/s)+(0.09kgm/s)=((90g)(103kg1g))vxvx=0.26m/s\begin{array}{c}\\\left( {0.113\,{\rm{kg}} \cdot {\rm{m/s}}} \right) + \left( {0\,{\rm{kg}} \cdot {\rm{m/s}}} \right) + \left( { - 0.09\,{\rm{kg}} \cdot {\rm{m/s}}} \right) = \left( {\left( {90\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right){v_x}\\\\{v_x} = 0.26\,{\rm{m/s}}\\\end{array}

Applying conservation of momentum in the vertical direction,

m1u1sinθ1+m2u2sinθ2+m3u3sinθ3=Mvy{m_1}{u_1}\sin {\theta _1} + {m_2}{u_2}\sin {\theta _2} + {m_3}{u_3}\sin {\theta _3} = M{v_y}

Here, vy{v_y}is the vertical component of the velocity of the resulting blob.

Substitute40g40\,{\rm{g}}form1{m_1}, 4m/s - 4\,{\rm{m/s}}foru1{u_1}and4545^\circ forθ1{\theta _1}in m1u1sinθ1{m_1}{u_1}\sin {\theta _1}.

m1u1sinθ1=((40g)(103kg1g))(4m/s)sin45=0.113kgm/s\begin{array}{c}\\{m_1}{u_1}\sin {\theta _1} = \left( {\left( {40\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right)\left( { - 4\,{\rm{m/s}}} \right)\sin 45^\circ \\\\ = - 0.113\,{\rm{kg}} \cdot {\rm{m/s}}\\\end{array}

Substitute20g20\,{\rm{g}}form2{m_2}, 2m/s2\,{\rm{m/s}}foru2{u_2}and9090^\circ forθ2{\theta _2}inm2u2sinθ2{m_2}{u_2}\sin {\theta _2}.

m2u2sinθ2=((20g)(103kg1g))(2m/s)sin90=0.04kgm/s\begin{array}{c}\\{m_2}{u_2}\sin {\theta _2} = \left( {\left( {20\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right)\left( {2\,{\rm{m/s}}} \right)\sin 90^\circ \\\\ = 0.04\,{\rm{kg}} \cdot {\rm{m/s}}\\\end{array}

Substitute 30g30\,{\rm{g}}form3{m_3}, 3m/s3\,{\rm{m/s}}foru3{u_3}, 180180^\circ forθ3{\theta _3}in m3u3sinθ3{m_3}{u_3}\sin {\theta _3}.

m3u3sinθ3=((30g)(103kg1g))(3m/s)sin180=0kgm/s\begin{array}{c}\\{m_3}{u_3}\sin {\theta _3} = \left( {\left( {30\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right)\left( {3\,{\rm{m/s}}} \right)\sin 180^\circ \\\\ = 0\,{\rm{kg}} \cdot {\rm{m/s}}\\\end{array}

Substitute90g90\,{\rm{g}}forMM.

Mvy=((90g)(103kg1g))vyM{v_y} = \left( {\left( {90\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right){v_y}

Substitute 0.113kgm/s - 0.113\,{\rm{kg}} \cdot {\rm{m/s}} for m1u1sinθ1{m_1}{u_1}\sin {\theta _1}, 0.04kgm/s0.04\,{\rm{kg}} \cdot {\rm{m/s}} for m2u2sinθ2{m_2}{u_2}\sin {\theta _2}, 0kgm/s0\,{\rm{kg}} \cdot {\rm{m/s}} form3u3sinθ3{m_3}{u_3}\sin {\theta _3} and ((90g)(103kg1g))vy\left( {\left( {90\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right){v_y} for MvyM{v_y} in the equation of conservation of momentum, m1u1sinθ1+m2u2sinθ2+m3u3sinθ3=Mvy{m_1}{u_1}\sin {\theta _1} + {m_2}{u_2}\sin {\theta _2} + {m_3}{u_3}\sin {\theta _3} = M{v_y} becomes,

(0.113kgm/s)+(0.04kgm/s)+(0kgm/s)=((90g)(103kg1g))vyvy=0.81m/s\begin{array}{c}\\\left( { - 0.113\,{\rm{kg}} \cdot {\rm{m/s}}} \right) + \left( {0.04\,{\rm{kg}} \cdot {\rm{m/s}}} \right) + \left( {0\,{\rm{kg}} \cdot {\rm{m/s}}} \right) = \left( {\left( {90\,{\rm{g}}} \right)\left( {\frac{{{{10}^{ - 3}}\,{\rm{kg}}}}{{1\,{\rm{g}}}}} \right)} \right){v_y}\\\\{v_y} = - 0.81\,{\rm{m/s}}\\\end{array}

The magnitude of the vertical component of the velocity is,

vy=0.81m/s{v_y} = 0.81\,{\rm{m/s}}

The speed of the resulting blob is,

v=vx2+vy2v = \sqrt {v_x^2 + v_y^2}

Substitute 0.26m/s0.26\,{\rm{m/s}}forvx{v_x}and 0.81m/s0.81\,{\rm{m/s}}forvy{v_y}.

v=(0.26m/s)2+(0.81m/s)2=0.85m/s\begin{array}{c}\\v = \sqrt {{{\left( {0.26\,{\rm{m/s}}} \right)}^2} + {{\left( {0.81\,{\rm{m/s}}} \right)}^2}} \\\\ = 0.85\,{\rm{m/s}}\\\end{array}

The direction of the velocity vector is given by the equation

θ=tan1(vyvx)\theta = {\tan ^{ - 1}}\left( {\frac{{{v_y}}}{{{v_x}}}} \right)

Substitute 0.26m/s0.26\,{\rm{m/s}}forvx{v_x}and 0.81m/s0.81\,{\rm{m/s}}forvy{v_y}.

θ=tan1(0.810.26)=72.2\begin{array}{c}\\\theta = {\tan ^{ - 1}}\left( {\frac{{0.81}}{{0.26}}} \right)\\\\ = 72.2^\circ \\\end{array}

Ans:

The speed of the resulting blob is0.85m/s0.85\,{\rm{m/s}}

Add a comment
Know the answer?
Add Answer to:
Figure p9.55 shows a collision between three balls of clay.The three hit simultaneously and stick together. What are th...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT