Question

5. Consider the following process. Take 1 mol of monatomic ideal gas at 1 L and 300 K and heat it to 600 K while expanding th

0 0
Add a comment Improve this question Transcribed image text
Answer #1

As the given process is Irreversible adiabatic .so formula for entropy change

ASSun tormh tor Etrely ASSs + Mm n 600 + 30D 2.5 Rx m2 4.4 . K 올) T(vm tor monedmie H irr T he 4 Suniiv. =

Add a comment
Know the answer?
Add Answer to:
5. Consider the following process. Take 1 mol of monatomic ideal gas at 1 L and 300 K and heat it to 600 K while expand...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1.08 mol of a monatomic ideal gas undergoes a cyclic process in a reversible engine, as...

    1.08 mol of a monatomic ideal gas undergoes a cyclic process in a reversible engine, as shown in the PV diagram. The gas is initially at STP at point a. The curved path is an isotherm at T = 411 K, and the straight paths represent processes at constant pressure or constant volume. Determine the heat added in process c-a.

  • A process has been proposed whereby an ideal gas is taken from P=10 bar and T=300...

    A process has been proposed whereby an ideal gas is taken from P=10 bar and T=300 K to P=1 bar and T=500K in a closed system. During the process the system performs 1,000 [J] of work and receives 6,430 [J] of heat from the surroundings at a constant temperature of 300 K. The constant pressure heat capacity of the gas cp=30 [J/(mol K)] . Gas constant R=8.314 [J/(mol K)]. (a) (7 pts.) What is the change of molar internal energy...

  • A monatomic ideal gas is initially at volume, pressure, temperature (Vi, Pi, Ti). Consider two different...

    A monatomic ideal gas is initially at volume, pressure, temperature (Vi, Pi, Ti). Consider two different paths for expansion. Path 1: The gas expands quasistatically and isothermally to (Va, Pz. T2) Path 2: First the gas expands quasistatically and adiabatically (V2, P.,T-),where you will calculate P T. Then the gas is heated quasistically at constant volume to (Va. P2 T1). a. Sketch both paths on a P-V diagram. b. Calculate the entropy change of the system along all three segments...

  • A 650,000 mL volume of monatomic ideal gas inside of a heat engine starts at room...

    A 650,000 mL volume of monatomic ideal gas inside of a heat engine starts at room temperature (20.0o C) and pressure (101.325 kPa).  At first, the volume is compressed without changing the temperature.  Then, 3.7 kJ of heat is added while the volume remains constant.  Finally, the volume is allowed to expand adiabatically back to its starting conditions. Assume all processes are reversible and ideal. Prove that the entropy and efficiency for the three-stroke heat engine are consistent with the second law of...

  • A rigid container holds 4.00 mol of a monatomic ideal gas that has temperature 300 K....

    A rigid container holds 4.00 mol of a monatomic ideal gas that has temperature 300 K. The initial pressure of the gas is 6.00 * 104 Pa. What is the pressure after 6000 J of heat energy is added to the gas?

  • In an industrial process the volume of 25.0 mol of a monatomic ideal gas is reduced...

    In an industrial process the volume of 25.0 mol of a monatomic ideal gas is reduced at a uniform rate from 0.616 m3 to 0.308 m3 in 2.00 h while its temperature is increased at a uniform rate from 27.0°C to 450°C. Throughout the process, the gas passes through thermodynamic equilibrium states. What are (a) the cumulative work done by the gas, (b) the cumulative energy absorbed by the gas as heat, and (c) the molar specific heat for the...

  • Consider a reversible adiabatic expansion of 1.00 mol of an ideal gas, starting from 1.90 L...

    Consider a reversible adiabatic expansion of 1.00 mol of an ideal gas, starting from 1.90 L and 415 K , if 2.0 kJ of work is done by the expansion. The molar heat capacity at constant volume of the gas is 2.5R. R = 8.314 JK−1mol−1. Determine the final temperature of the gas in the process. Determine the final volume of the gas in the process. Determine the final pressure of the gas in the process.

  • What is the internal energy of 2.0 mol of an ideal monatomic gas at 300 K?...

    What is the internal energy of 2.0 mol of an ideal monatomic gas at 300 K? J

  • If 1.85 x 105 atoms of a monatomic ideal gas are heated from 300 K to...

    If 1.85 x 105 atoms of a monatomic ideal gas are heated from 300 K to 520 K in a sealed container that has a fixed volume of 0.0560 m1 what is the change in entropy of the gas?

  • (1) A process has been proposed whereby an ideal gas is taken from P=10 bar and...

    (1) A process has been proposed whereby an ideal gas is taken from P=10 bar and T=300 K to P=1 bar and T=500K in a closed system. During the process the system performs 1,000 [J] of work and receives 6,430 [j] of heat from the surroundings at a constant temperature of 300 K. The constant pressure heat capacity of the gas Cp=30 [J/(mol K)]. Gas constant R=8.314 [J/(mol K)]. (a) (7 pts.) What is the change of molar internal energy...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT