Question

A solid cylindrical disk with moment of inertia I, rotates about a vertical axle through its center with angular velocity o;.
0 0
Add a comment Improve this question Transcribed image text
Answer #1

There is not any external torque on the system so angular momentum will be conserve.

Linitial = Lfinal

I1wi = (I1 + I2)wf

So in asked terms -

Wf = I1W1/(I1 + I2)

Add a comment
Know the answer?
Add Answer to:
A solid cylindrical disk with moment of inertia I, rotates about a vertical axle through its center with angular ve...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 24 4 points Conservation of angular momentum: A disk with moment of inertia I1 = 3kgm...

    24 4 points Conservation of angular momentum: A disk with moment of inertia I1 = 3kgm rotates about a frictionless, vertical axle with angular speed wi = 8Rad/s. A second disk, this one having moment of inertia 12 = 1kgm and initially not rotating, drops onto the first disk. Because of friction between the surfaces, the two eventually reach the same angular speed W2 . What is w2? 13 Before After 24 Rad/s 12 Rad/s 6 Rad/s 16 Rad/s 4...

  • A cylinder with moment of inertia I1 rotates with angular velocity ω0 about a frictionless vertical axle.

    A cylinder with moment of inertia I1 rotates with angular velocity ω0 about a frictionless vertical axle. A second cylinder, with moment of inertia I2, initially not rotating, drops onto the first cylinder (Fig. P8.55). Because the surfaces are rough, the two eventually reach the same angular velocity,ω.Figure P8.55(a) Calculate ω. (Use I1 for I1, I2 for I2, and w0 for ω0 in yourequation.)(b) Show that energy is lost in this situation (Do this on paper.Your instructor may ask you to turn in this work.), and...

  • A uniform disk with mass M and radius R is rotating about an axis through its center-of-mass.

    A uniform disk with mass M and radius R is rotating about an axis through its center-of-mass. The axis is perpendicular to the disk. The moment of inertial for the disk with a central axis is I MR2. Two non-rotating smaller disks, each with mass M2 and radius R/4, are glued on the original disk as shown in the figure. (a) Show that the ratio of the moments of inertia is given by  I'/I = 35/16, where I' is the moment...

  • A solid disk rotates in the horizontal plane at an angular velocity of 0.0612 rad/s with...

    A solid disk rotates in the horizontal plane at an angular velocity of 0.0612 rad/s with respect to an axis perpendicular to the disk at its center. The moment of inertia of the disk is 0.134 kg·m2. From above, sand is dropped straight down onto this rotating disk, so that a thin uniform ring of sand is formed at a distance of 0.398 m from the axis. The sand in the ring has a mass of 0.509 kg. After all...

  • A solid disk rotates in the horizontal plane at an angular velocity of 0.0647 rad/s with...

    A solid disk rotates in the horizontal plane at an angular velocity of 0.0647 rad/s with respect to an axis perpendicular to the disk at its center. The moment of inertia of the disk is 0.199 kg·m2. From above, sand is dropped straight down onto this rotating disk, so that a thin uniform ring of sand is formed at a distance of 0.420 m from the axis. The sand in the ring has a mass of 0.499 kg. After all...

  • A solid disk rotates in the horizontal plane at an angular velocity of 5.00 × 10-2...

    A solid disk rotates in the horizontal plane at an angular velocity of 5.00 × 10-2 rad/s with respect to an axis perpendicular to the disk at its center. The moment of inertia of the disk is 0.15 kg.m2. From above, sand is dropped straight down onto this rotating disk, so that a thin uniform ring of sand is formed at a distance of 0.40 m from the axis. The sand in the ring has a mass of 0.50 kg....

  • A disk with moment of inertia 9.15 × 10−3 kg∙m^2 initially rotates about its center at...

    A disk with moment of inertia 9.15 × 10−3 kg∙m^2 initially rotates about its center at angular velocity 5.32 rad/s. A non-rotating ring with moment of inertia 4.86 × 10−3 kg∙m^2 right above the disk’s center is suddenly dropped onto the disk. Finally, the two objects rotate at the same angular velocity ?? about the same axis. There is no external torque acting on the system during the collision. Please compute the system’s quantities below. 1. Initial angular momentum ??...

  • The disk ntating with a constant angular accelerstion Assurse the axle is frictionkess Ca) Calcud...

    please answer 5 and 6 im sorry thats the closest pic i can get to it the disk ntating with a constant angular accelerstion Assurse the axle is frictionkess Ca) Calcudlate the magnituke and direction of the net torpsue prodhuced by the twe lorces b) Determine the magnitude of the angular acceleration of the disk rad/s Cakulate the angular momentum, in kg mP/s, of an ice skater spinning at 6.00 rew/s given is moment of inertia is 0 rew/s given...

  • please write neatly and circle answers A cylinder with moment of inertia I, rotates with angular...

    please write neatly and circle answers A cylinder with moment of inertia I, rotates with angular velocity , about a frictionless vertical axle. A second cylinder, with moment of inertla I,, initially not rotating, drops onto the first cylinder. Because the surfaces are rough, the two cylinders eventually reach the same angular speed . After Before (a) Calculate o. (Use the following as necessary: I,, I and ) 40 (b) Show that kinetic energy is lost in this situation. (Submit...

  • To understand how to use conservation of angular momentum to solve problems involving collisions of rotating bodies. (...

    To understand how to use conservation of angular momentum to solve problems involving collisions of rotating bodies. (Figure 1) Consider a turntable to be a circular disk of moment of inertia It rotating at a constant angular velocity ωi around an axis through the center and perpendicular to the plane of the disk (the disk's "primary axis of symmetry"). The axis of the disk is vertical and the disk is supported by frictionless bearings. The motor of the turntable is...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT