Question

(d) A standing wave is described by equation of the form an t+) y Ysin(kx)sin( The wave has a frequency of 11.5 Hz and a wave

0 0
Add a comment Improve this question Transcribed image text
Answer #1

We have k=/211/A

And angular velocity \omega=2pi/T

given y= Ysin(kx)sin(wt+\Theta)

inen heeveny arelngth A = /.3 A Y= o.12 5 Ampiihde 3 Sce 3 0 XIO 2 IT 0.2S Si sin(2 en o 12 y o12 S X in 4 S. Sin (124.2) O.

Add a comment
Know the answer?
Add Answer to:
(d) A standing wave is described by equation of the form an t+) y Ysin(kx)sin( The wave has a frequency of 11.5 Hz and...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A wave is described by y 0.020 2 sin(kx wt), where k 2.18 rad/m, w 3.60...

    A wave is described by y 0.020 2 sin(kx wt), where k 2.18 rad/m, w 3.60 rad/s, x and y are in meters, and t is in seconds. (a) Determine the amplitude of the wave. m (b) Determine the wavelength of the wave (c) Determine the frequency of the wave. Hz (d) Determine the speed of the wave. m/s

  • A wave is described by y = 0.020 8 sin(kx - wt), where k = 2.22 rad/m, w = 3.66 rad/s, x and y are in meters, and t is in seconds

    6. A wave is described by y = 0.020 8 sin(kx - wt), where k = 2.22 rad/m, w = 3.66 rad/s, x and y are in meters, and t is in seconds. (a) Determine the amplitude of the wave. (b) Determine the wavelength of the wave. (c) Determine the frequency of the wave. (d) Determine the speed of the wave. 7. When a particular wire is vibrating with a frequency of 3.00 Hz, a transverse wave of wavelength 64.0 cm is produced. Determine the...

  • The wave function for a standing wave on a string is described by y(x, t) =...

    The wave function for a standing wave on a string is described by y(x, t) = 0.016 sin(4πx) cos (57πt), where y and x are in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x = 0.10 m ymax =  m vmax =  m/s (b) x = 0.25 m ymax =  m vmax =  m/s (c) x = 0.30 m ymax =  m vmax =  m/s (d) x = 0.50...

  • The equation of a particular wave travelling along a wire is given as y=(0.47m)sin[(150s−1)t+(53m−1)x]y=(0.47m)sin⁡[(150s−1)t+(53m−1)x] Based on...

    The equation of a particular wave travelling along a wire is given as y=(0.47m)sin[(150s−1)t+(53m−1)x]y=(0.47m)sin⁡[(150s−1)t+(53m−1)x] Based on this equation, find the amplitude, wavelength, frequency, and velocity of the wave. Be sure to include the correct sign for the velocity. Amplitude = m Wavelength = m Frequency = Hz Velocity = m/s What is the displacement of the wire at x=0.29x=0.29 m and t=0.26t=0.26 s? Displacement = m I got the first three right but can't figure out how to get the...

  • A transverse wave has a frequency of v = 39 Hz and a wavelength of 1 = 5.5 m

    A transverse wave has a frequency of v = 39 Hz and a wavelength of 1 = 5.5 m. The wave obtains a maximum displacement of ym = 2.6 m and propagates in the -x direction.Part (a) Given the form y(x,t) = A sin(B) for the displacement of the wave, input an expression for A.Part (b) Using the same form y(x,t) input an expression for B. Part (c) How fast is the wave traveling in m/s?

  • A harmonic wave travelling to the right is described by D (x, t) = (2.5 mm)...

    A harmonic wave travelling to the right is described by D (x, t) = (2.5 mm) sin 3.0 m− 1 x − 9.0 s−1 t, where x is measured in metres, and t is measured in seconds. The wave encounters a free-end point of reflection. The reflection and the original wave are superimposed to form a standing wave pattern. (a) What are the amplitude, speed, wavelength, and frequency of the resulting standing wave? (b) Write the equation of the resulting...

  • A wave on a string is described by the relation y = A sin(38t-0.024x), where t...

    A wave on a string is described by the relation y = A sin(38t-0.024x), where t is measured in seconds and x in meters, with A = 0.16 m Flnd the frequency of the wave 6.048 Hz Find the wavelength of the wave. Flnd the speed of the wave m/s

  • The equation of a transverse wave traveling along a string is y = (0.11 m)sin[(0.78 rad/m)x...

    The equation of a transverse wave traveling along a string is y = (0.11 m)sin[(0.78 rad/m)x - (14 rad/s)t] (a) What is the displacement y at x = 2.6 m, t = 0.27 s? A second wave is to be added to the first wave to produce standing waves on the string. If the wave equation for the second wave is of the form y(x,t) = ymsin(kx + ωt), what are (b) ym, (c) k, and (d) ω (e) the...

  • The equation of a transverse wave traveling along a string is y = (0.21 m)sin[(0.71 rad/m)x...

    The equation of a transverse wave traveling along a string is y = (0.21 m)sin[(0.71 rad/m)x - (13 rad/s)t] (a) What is the displacement y at x = 3.5 m, t = 0.14 s? A second wave is to be added to the first wave to produce standing waves on the string. If the wave equation for the second wave is of the form y(x,t) = ymsin(kx + ωt), what are (b) ym, (c) k, and (d) ω (e) the...

  • The wave function for a standing wave on a string is described by y(x, t) =...

    The wave function for a standing wave on a string is described by y(x, t) = 0.023 sin(4x) cos (591), where y and x are in meters and t is in seconds. Determine the maximum displacement and maximum speed of a point on the string at the following positions. (a) x = 0.10 m Ymax = Vmax = m/s m (b) x = 0.25 m Vmax = Vmax = m m/s (c) x = 0.30 m Ymax = m Vmax...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT